Internet of Things: Unterschied zwischen den Versionen

Aus Controlling-Wiki
Keine Bearbeitungszusammenfassung
 
(81 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Das Internet prägt seit Jahrzenten die Unternehmungen auf allen Ebenen. Durch den Gebrauch des Internets haben sich neue, innovative Geschäftsmodelle ergeben. Mit dem Internet of Things (IoT) steht die nächste Generation des Internet „vor der Tür“. (Fleisch, Weinberger & Wortmann, 2015, S. 445)
{{Geprueft|+}}


Die Idee ist die Ausweitung des Internets in die reale Welt hinein. Dementsprechend sollen Alltagsgegenstände bzw. Things zu Teilen des Internets werden. Diese „Things“ können Informationen generieren und weitergeben oder als Zugangspunkte zum Internet dienen, womit sich weitreichende Möglichkeiten eröffnen (Pampel, 2018, S. 21).
Das Internet prägt seit Jahrzenten die Unternehmungen auf allen Ebenen. Durch den Gebrauch des Internets haben sich neue, innovative Geschäftsmodelle ergeben. Mit dem Internet of Things (IoT) steht die nächste Generation des Internets „vor der Tür“ (Fleisch, Weinberger & Wortmann, 2015, S. 445).


Das Internet der Dinge kommt bereits heute in vielen Geschäftsbereichen zur Anwendung. So zum Beispiel in Unternehmungen im Bereich „Industrie 4.0“, zu Hause mit dem „Smart Home“ aber auch in der Energiebranche mit „Smart Energy“. (Fleisch et al., 2015, S. 446, zit. in Atzori/Iera/Morabito, 2010, S. 2793ff; Vermesan et al., 2014, S. 30ff.)
Die Idee ist die Ausweitung des Internets in die reale Welt hinein. Dementsprechend sollen Alltagsgegenstände bzw. "Things" zu Teilen des Internets werden. Diese „Things“ können Informationen generieren und weitergeben oder als Zugangspunkte zum Internet dienen, womit sich weitreichende Möglichkeiten eröffnen (Pampel, 2018, S. 21).


Durch die drahtlose Vernetzung und Echtzeit Kommunikation steigert das IoT die Effizienz, senkt Kosten und spart Zeit ein.
Das Internet der Dinge kommt bereits heute in vielen Geschäftsbereichen zur Anwendung. So zum Beispiel in Unternehmungen im Bereich „Industrie 4.0“, zu Hause mit dem „Smart Home“ aber auch in der Energiebranche mit „Smart Energy“ (Atzori/Iera/Morabito, 2010, S. 2793ff; Vermesan et al., 2014, S. 30ff. zit. in Fleisch et al., 2015, S. 446).
 
Durch die drahtlose Vernetzung und Kommunikation in Echtzeit steigert das IoT die Effizienz, senkt Kosten und spart Zeit ein.


== Definition ==
== Definition ==
Der Begriff Internet of Things (Deutsch: Internet der Dinge) oder abgekürzt IoT, beschreibt die Kombination der physischen mit der digitalen Welt.
Der Begriff Internet of Things (Deutsch: Internet der Dinge) oder abgekürzt IoT, beschreibt die Kombination der physischen mit der digitalen Welt.


Eine offizielle Definition gibt es jedoch nicht. "Sinnesgemäss wird es auch oft als die digitale Ver-netzung beliebiger Gegenstände des Alltags auf der Basis standardisierter Internettechnologien beschrieben. Ziel dabei ist, dass die vernetzten Gegenstände in einer für den Menschen nützlichen Weise miteinander Daten austauschen und interagieren können“ (Sinsel, 2020, S.4).
Eine offizielle Definition gibt es jedoch nicht. "Sinnesgemäss wird es auch oft als die digitale Vernetzung beliebiger Gegenstände des Alltags auf der Basis standardisierter Internettechnologien beschrieben. Ziel dabei ist, dass die vernetzten Gegenstände in einer für den Menschen nützlichen Weise miteinander Daten austauschen und interagieren können“ (Sinsel, 2020, S.4).
 
Das Internet of Things ist bereits heute ein stetiger Begleiter im Alltag. Smartphones, Smartwat-ches, aber auch Fernseher und Kaffeeautomaten sind alles Geräte, welche ins IoT eingebunden sind. Durch die hohe Vernetzung können immer mehr strukturierte Daten ([[Big Data]]) generiert werden, welche anschliessend zu Analyse- und Optimierungszwecken verwendet werden (KMU-Portal, online). So ermöglicht die neue Technologie den Kundinnen und Kunden ergänzende Produkte oder auch sogenannte Ökosysteme anzubieten und so als ergän-zendes Element zum Menschen zu fungieren. (Fleisch et al., 2015, S. 444).
 
Inzwischen übersteigt die Anzahl vernetzter Geräte, sogenannter «intelligenter Gegenstände» (KMU-Portal, online), weltweit gar die Milliardengrenze. Dem gegenüber gibt es auch das «[https://www.itwissen.info/IoP-Internet-of-people.html Internet of People]» (IoP), welches für die Vernetzung der Personen steht (HewlettPackard Enterprise, online).  


In vielen Fachliteraturen über das IoT stösst man zudem immer wieder auf den Begriff Industrial Internet of Things (IIoT) oder Industrie 4.0. Der Unterschied zwischen IoT und IIoT ist lediglich der Anwendungsbereich. Denn beispielhafte Anwendungsbereiche für das IoT sind im privaten Umfeld, Transport, Gesundheitswesen oder Smart Homes. Das IIoT hingegen, wie es der Name bereits sagt, bezieht sich auf industrielle Umgebungen.  
Das Internet of Things ist bereits heute ein stetiger Begleiter im Alltag. Smartphones, Smartwatches, aber auch Fernseher und Kaffeeautomaten sind alles Geräte, welche ins IoT eingebunden sind. Durch die hohe Vernetzung können immer mehr strukturierte Daten ([https://wiki.hslu.ch/controlling/Big_Data Big Data]) generiert werden, welche anschliessend zu Analyse- und Optimierungszwecken verwendet werden (KMU-Portal, online). So ermöglicht die neue Technologie den Kundinnen und Kunden ergänzende Produkte oder auch sogenannte Ökosysteme anzubieten und so als ergänzendes Element zum Menschen zu fungieren. (Fleisch et al., 2015, S. 444).  


Inzwischen übersteigt die Anzahl vernetzter Geräte, sogenannter «intelligenter Gegenstände» weltweit gar die Milliardengrenze (KMU-Portal, online).Dem gegenüber gibt es auch das «Internet of People» (IoP), welches für die Vernetzung der Personen steht (HewlettPackard Enterprise, online).


In vielen Fachliteraturen über das IoT stösst man zudem immer wieder auf den Begriff Industrial Internet of Things (IIoT) oder Industrie 4.0. Der Unterschied zwischen IoT und IIoT ist lediglich der Anwendungsbereich. Denn beispielhafte Anwendungsbereiche für das IoT sind im privaten Umfeld, Transport, Gesundheitswesen oder Smart Homes. Das IIoT hingegen, wie es der Name bereits sagt, bezieht sich auf industrielle Umgebungen.


== Ziele ==
== Ziele ==
Die Idee dieser neuen Technologien besteht darin, die bestehenden Produkte mit Sensoren auszustatten, damit diese Daten über das Produkt selber und deren Nutzung sowie die Umwelt sammeln. Auch die Verknüpfung mit anderen solchen „smarten“ Produkten soll dadurch möglich sein.
Die Idee dieser neuen Technologien besteht darin, die bestehenden Produkte mit Sensoren auszustatten, damit diese Daten über das Produkt selber und deren Nutzung sowie die Umwelt sammeln. Auch die Verknüpfung mit anderen „smarten“ Produkten wird dadurch möglich.  
 
Für den Nutzer selber, soll sich durch diese Sensoren keinen Nachteil in deren Nutzung zeigen. Diese Sensoren sollen nämlich nicht augenfällig platziert werden, so dass sie vom Menschen kaum wahrgenommen werden. Denn das Produkt selber (z.B. eine Glühbirne) soll weiter-hin seiner ursprünglichen Verwendung dienen.
(Fleisch et al., 2015, S. 445, zit. in Vermesan et al., 2014; Yoo/Henfridsson/Lyytinen, 2010, S. 724f.).


Für den Nutzer selbst, soll sich durch diese Sensoren keinen Nachteil in deren Nutzung zeigen. Diese Sensoren werden unauffällig platziert, so dass sie vom Menschen kaum wahrgenommen werden. Denn das Produkt selber (z.B. eine Glühbirne) soll weiterhin seiner ursprünglichen Verwendung dienen
(Vermesan et al., 2014; Yoo/Henfridsson/Lyytinen, 2010, S. 724f.zit. in Fleisch et al., 2015, S. 445).


Die Ziele vom IoT decken sich stark mit den Zielen der Digitalisierung. So hat das IoT folgende Ziele (Informatik-aktuell, online):
Die Ziele vom IoT decken sich stark mit den Zielen der Digitalisierung. So hat das IoT folgende Ziele (Informatik-aktuell, online):


* '''Automatisierung von Abläufen:''' Durch die Automatisierung kann die Effizienz gesteigert und Ressourcen eingespart werden, was wiederum auch Zeit spart.


* '''Automatisierung von Abläufen:'''
* '''Sicherung der Nachhaltigkeit:''' Warnsysteme können alarmieren und Einfluss nehmen, bevor ein grösserer Schaden entsteht. So können beispielsweise Geräte, bei welchen ein Defekt droht, frühzeitig warnen und Ersatz für das defekte Element fordern. Damit können grössere oder auch Folgeschäden verhindert werden.
Durch die Automatisierung kann die Effizienz gesteigert und Ressourcen eingespart werden, was wiederum auch Zeit spart.


* '''Sicherung der Nachhaltigkeit:'''
* '''Bessere Mensch-Maschinen-Interaktion:''' Durch Touchpanels wird vieles einfacher und intuitiver gestaltet. Über das Smartphone können beispielsweise Geräte in der Wohnung auch von auswärts gesteuert werden.  
Warnsysteme können alarmieren und Einfluss nehmen, bevor ein grösserer Schaden ent-steht. So können beispielsweise Geräte, bei welchen ein Defekt droht, frühzeitig warnen und Ersatz für das defekte Element fordern. Damit können grössere oder auch Folgeschäden verhindert werden.
 
* '''Bessere Mensch-Maschinen-Interaktion:'''
Durch Touchpanels wird vieles einfacher und intuitiver gestaltet. Über das Smartphone kön-nen beispielsweise Geräte in der Wohnung auch von auswärts gesteuert werden.
 
* '''Höhere Sicherheit:'''
Durch die Vernetzung der Dinge können Notsituationen früher bemerkt werden. Durch Mik-rochips in der Skiausrüstung können Lawinenopfer schneller gefunden werden. Aber auch die boomenden Fitness-Tracker zur Überwachung des Herzschlages können schnell auf all-fällige Notlagen hinweisen.


* '''Höhere Sicherheit:''' Durch die Vernetzung der Dinge können Notsituationen früher bemerkt werden. Durch Mikrochips in der Skiausrüstung können Lawinenopfer schneller gefunden werden. Aber auch die boomenden Fitness-Tracker zur Überwachung des Herzschlages können schnell auf allfällige Notlagen hinweisen.


== Internet of Things im Unternehmen ==
== Internet of Things im Unternehmen ==


=== Einfluss auf Geschäftsmodelle ===
=== Einfluss auf Geschäftsmodelle ===
Um mit dem Trend der digitalen Transformation Schritt zu halten ist es essentiell, sich mit der Gestaltung neuer Geschäftsmodelle auseinander zu setzten. Die Verbindung von neuen techno-logischen Ideen, welche sich positiv auf den wirtschaftlichen Erfolg der Unternehmung auswirken. (Fleisch et al., 2015, S. 445)  
Mit dem Trend der digitalen Transformation Schritt zu halten ist essentiell. Dazu setzen sich Unternehmen laufend mit der Gestaltung neuer Geschäftsmodelle sowie der Verbindung von neuen technologischen Ideen, welche sich positiv auf den wirtschaftlichen Erfolg auswirken, auseinander (Fleisch et al., 2015, S. 445).
 
Jedoch herrscht bei den Unternehmungen immer noch eine gewisse kritische Haltung gegen-über neuartigen Technologien. Es besteht immer noch eine grosse Unsicherheit bezüglich des gewinnbringenden Einsatzes solcher Technologien, auch wenn diese den Horizont der neuartigen Geschäftsmodelle erweitern mögen. (Fleisch et al., 2015, S. 444–445)


Jedoch herrscht bei den Unternehmungen nach wie vor eine gewisse kritische Haltung gegenüber neuartigen Technologien. Es besteht noch immer eine grosse Unsicherheit bezüglich des gewinnbringenden Einsatzes solcher Technologien, auch wenn diese den Horizont der neuartigen Geschäftsmodelle erweitern mögen (Fleisch et al., 2015, S. 444–445).


=== Gestaltung neuer Geschäftsmodelle ===
=== Gestaltung neuer Geschäftsmodelle ===
Zeile 59: Zeile 51:
{| class="wikitable"
{| class="wikitable"
|-
|-
| '''Digitally charged Products'''    || Physische Produkte wie z.B. eine LED-Lampe hat für den Anwender nicht nur noch den Nutzen des Lichts, sondern wird gemäss Fleisch, Weinberger und Wortmann (2015) mit „neuen Sensor-basierten digitalen Dienstleistungsbündel „aufgeladen“ und mit neuem Wert-versprechen positioniert“ (S. 457).  
| '''Digitally charged Products'''    || Physische Produkte wie z.B. eine LED-Lampe hat für den Anwender nicht nur den Nutzen des Lichts, sondern wird mit neuen Sensor-basierten digitalen Dienstleistungsbündel „aufgeladen“ und mit neuem Wertversprechen positioniert (Fleisch, et al., 2015, S. 457). Ein Beispiel dazu ist die Sicherheitslösung der LED-Lampe, wie sie unter Punkt 4 "Wertschöpfungsstufen einer Anwendung im IoT" beschrieben wird.
Ein Beispiel dazu ist, wie bereits erwähnt, die Sicherheitslösung der LED-Lampe.
|-
|-
| '''Sensor as a Service'''      || Messwerte physischer Geräte werden als eigenständiges Gut gespeichert, aufbereitet und vermarktet (Horváth, 2017, S.119).  
| '''Sensor as a Service'''      || Messwerte physischer Geräte werden als eigenständiges Gut gespeichert, aufbereitet und vermarktet (Horváth, 2017, S.119). Im Unterschied zu dem „Digitally charged Products“ sind die Daten die primäre Währung, die es zu bewirtschaften gibt (Fleisch, et al., 2015, S. 458).
Im Unterschied zu dem „Digitally charged Products“ sind die Daten die primäre Währung, die es zu bewirtschaften gibt (Fleisch, et al., 2015, S. 458).
|}
|}




 
Damit sich solch neue Geschäftsmodelle und die Gestaltung von Ökosystemen überhaupt umsetzen lassen, sind die Vorlieben und Wünsche der Kundinnen und Kunden von grosser Bedeutung. Dank der immer stärker werdenden Vernetzung der Gesellschaft durch den Gebrauch von sozialen Netzwerken stehen somit grosse Datenmengen über die Interessen der Nutzer zeitnah in «real time» zur Verfügung, an welchen man sich bedienen kann.  
 
Da natürlich nicht alle Informationen dieser Datenflut für die Unternehmung von Relevanz sind besteht die Herausforderung darin, die wichtigen und relevanten Informationen herauszufiltern, diese miteinander zu kombinieren und somit große Datenmengen in intelligente Erkenntnisse zu verwandeln (Huber & Kaiser, 2015, S. 685–686).
 
 
 
 
 
 
 
 
Damit sich solche neuen Geschäftsmodelle und die Gestaltung von Ökosystemen überhaupt ermöglicht, sind die Vorlieben und Wünsche der Kundinnen und Kunden von grosser Bedeutung. Dank der immer stärker werdenden Vernetzung der Gesellschaft durch den Gebrauch von sozialen Netzwerken stehen somit grosse Datenmengen über die Interessen der Nutzer zeitnah quasi in «real time» zur Verfügung, an welchen man sich bedienen kann.  
Da natürlich nicht alle Informationen dieser Datenflut für die Unternehmung von Relevanz sind besteht die Herausforderung darin, die "wichtigen und relevanten Informationen herauszufiltern, diese miteinander zu kombinieren und somit große Datenmengen in intelligente Erkenntnisse zu verwandeln.“
(Huber & Kaiser, 2015, S. 685–686)
 
 


=== Integration von IoT in die Unternehmung ===
=== Integration von IoT in die Unternehmung ===
Zeile 87: Zeile 64:
Wie auch unser Ökosystem der Umwelt und Natur bildet auch das IoT eine Art Ökosystem. Einzelne Anwendungen werden aufeinander abgestimmt, und zu einem grossen Ganzen zusammengefasst.  
Wie auch unser Ökosystem der Umwelt und Natur bildet auch das IoT eine Art Ökosystem. Einzelne Anwendungen werden aufeinander abgestimmt, und zu einem grossen Ganzen zusammengefasst.  


An erster Stelle steht dabei die Ermittlung der, fürs Unternehmen, passenden Plattform über welche die Daten gewonnen und ausgetauscht werden sollen. Dabei ist es gleichzeitig auch von Bedeutung eine Strategie und Ziele zu definieren, was mit IoT erreicht werden will und was aus den Daten gewonnen werden soll. <br>
An erster Stelle steht dabei die Ermittlung der, fürs Unternehmen, passenden Plattform über welche die Daten gewonnen und ausgetauscht werden. Dabei ist es gleichzeitig auch von Bedeutung eine Strategie und Ziele zu definieren, was mit IoT erreicht werden will und was aus den Daten gewonnen werden soll. <br>


Auch die Maschinen und die ganzen IT-Systeme müssen auf IoT umgerüstet werden, damit es überhaupt möglich wird die Daten zu generieren und anschliessend auch auszuwerten. Das heisst die Maschinen und Geräte müssen miteinander kommunizieren, nicht nur mit internen Geräten, sondern beispielsweise auch mit Geräten bei Liefe-ranten und Kunden. So können die Daten in Echtzeit ausgetauscht und anschliessend auch verarbeitet werden. <br>
Auch die Maschinen und die ganzen IT-Systeme müssen auf IoT umgerüstet werden, damit es überhaupt möglich wird die Daten zu generieren und anschliessend auszuwerten. Das heisst die Maschinen und Geräte müssen miteinander kommunizieren, nicht nur mit internen Geräten, sondern beispielsweise auch mit Geräten bei Lieferanten und Kunden. So können die Daten in Echtzeit ausgetauscht und anschliessend auch verarbeitet werden. <br>


Bei der Analyse ist es wichtig zu wissen, welche Information aus den Daten genau gewonnen werden sollen. Geht es darum einen möglichst hohen Servicelevel bei Kunden und Lieferanten zu erreichen oder allenfalls die Bedürfnisse der Kunden besser zu kennen.
Bei der Analyse ist es wichtig zu wissen, welche Information aus den Daten genau gewonnen werden sollen. Geht es darum, einen möglichst hohen Servicelevel bei Kunden und Lieferanten zu erreichen oder allenfalls die Bedürfnisse der Kunden besser zu kennen?
Die Ziele des erhöhten Datenflusses:
Die Ziele des erhöhten Datenflusses sind unter anderem:


* Steigerung des Kundenwerts
* Steigerung des Kundenwerts
Zeile 98: Zeile 75:
* Verbesserung Kommunikation zwischen Kunden und Lieferanten
* Verbesserung Kommunikation zwischen Kunden und Lieferanten
* Einfluss auf Umwelt
* Einfluss auf Umwelt


== Wertschöpfungsstufen einer Anwendung im IoT ==
== Wertschöpfungsstufen einer Anwendung im IoT ==
Laut Fleisch, Weinberger & Wortmann (2015) erfolgt im IoT die Digitalisierung physischer Gegenstände durch die Ergänzung von IT auf mehreren Wertschöpfungsstufen (S. 446). Diese fünf Ebenen (siehe Abb. 1) werden im folgenden Abschnitt am Beispiel einer LED-Lampe er-klärt (S. 446-447).
Im IoT erfolgt die Digitalisierung physischer Gegenstände durch die Ergänzung von IT auf mehreren Wertschöpfungsstufen. Diese fünf Ebenen (siehe Abb. 1) werden im folgenden Abschnitt am Beispiel einer LED-Lampe erklärt (Fleisch, et al., 2015, S. 446-447).


[[Datei:Wertschöpfungsstufen_IoT.png|miniatur|300px|Abb. 1: Wertschöpfungsstufen einer Anwendung im IoT (Fleisch, et al., 2015, S. 447)]]


'''Ebene 1, Physisches Ding'''<br>
'''Ebene 1, Physisches Ding'''<br>
Die erste Ebene des Wertschöpfungsmodells bildet ein physisches Ding, wie z.B. eine LED-Lampe. Der Nutzen dieser LED-Lampe für den Anwender ist das Licht.  
Die erste Ebene des Wertschöpfungsmodells bildet ein physisches Ding, wie z.B. eine LED-Lampe. Der Nutzen dieser LED-Lampe für den Anwender ist das Licht.  


'''Ebene 2, Sensor / Aktuator'''<br>
'''Ebene 2, Sensor / Aktuator'''<br>
 
Dem physischen Ding wird ein Minicomputer mit Sensorik und Aktuatorik hinzugefügt. Bei einer LED-Lampe misst ein Sensor, ob Menschen im Raum sind. Die Sensorik misst also lokale Daten. Der Aktuator hingegen liefert lokale Services und erzeugt damit lokalen Nutzen, indem der Aktuator die Lampe in Abhängigkeit der An- bzw. Abwesenheit der Menschen automatisch ein- und ausschaltet.  
Dem physischen Ding wird ein Minicomputer mit Sensorik und Aktuatorik hinzugefügt. Bei einer LED-Lampe misst ein Sensor ob Menschen im Raum präsent sind. Die Sensorik misst also lokale Daten. Der Aktuator hingegen liefert lokale Services und erzeugt damit lokalen Nut-zen, in dem der Aktuator die Lampe in Abhängigkeit der An- bzw. Abwesenheit der Menschen automatisch ein- und ausschaltet.  


'''Ebene 3, Konnektivität''' <br>
'''Ebene 3, Konnektivität''' <br>
Dabei geht es um das Sicherstellen eines Zugangs zum Internet und damit des globalen Zugriffes. Somit kann die LED-Lampe über ein eingebautes Funkmodul ihren Zustand autorisierten Abonnenten auf der ganzen Welt bekanntgeben.  
Dabei geht es um das Sicherstellen eines Zugangs zum Internet und damit des globalen Zugriffes. Somit kann die LED-Lampe über ein eingebautes Funkmodul ihren Zustand autorisierten Abonnenten auf der ganzen Welt bekanntgeben.  


'''Ebene 4, Analytik'''<br>
'''Ebene 4, Analytik'''<br>
 
Diese Ebene sammelt, speichert, plausibilisiert und klassifiziert Sensordaten, webt Erkenntnisse anderer Webservices mit ein und errechnet Konsequenzen für die Aktuatorik. Im LED-Beispiel speichert Ebene 4 unter anderem die Ein- und Ausschaltzeiten von Lampen in einem Haushalt, klassifiziert Bewegungsmuster und führt die Betriebsstunden einzelner Lampen auf.  
Diese Ebene sammelt, speichert, plausibilisiert und klassifiziert Sensordaten, webt Erkenntnisse anderer Webservices mit ein und errechnet Konsequenzen für die Aktuatorik. Im LED-Beispiel speichert Ebene 4 u.a. die Ein- und Ausschaltzeiten von Lampen in einem Haushalt, klassifiziert Bewegungsmuster und führt die Betriebsstunden einzelner Lampen mit.  


'''Ebene 5, Digitaler Service'''<br>
'''Ebene 5, Digitaler Service'''<br>
Bei der obersten Ebene werden die Möglichkeiten aus den unteren Ebenen in digitale Dienstleistungen strukturiert, in geeigneter Form gebündelt (als Webservice oder mobile Applikation) und global zur Verfügung gestellt. Erst hier wird aus der LED-Lampe mit Anwesenheitssensor eine Sicherheitslampe. Denn der Besitzer kann per Knopfdruck Anwesenheit vorspielen, indem er die Lampe beispielsweise über sein Smartphone einschaltet. Im Fall eines unwillkommenen Eindringlings kann die Lampe einen Alarm an den Besitzer, seine Nachbarn oder die Polizei absetzen oder im „Fight-Back-Modus“ den Einbrecher mit rotem Blitzlicht zu vertreiben versuchen.


Bei der obersten Ebene werden die Möglichkeiten aus den unteren Ebenen in digitale Dienstleis-tungen strukturiert, in geeigneter Form gebündelt (als Webservice oder mobile Applikation) und global zur Verfügung gestellt. Erst hier wird aus der LED-Lampe mit Anwesenheitssensor eine Sicherheitslampe. Denn der Besitzer kann auf App-Knopfdruck Anwesenheit vorspielen, indem er die Lampe beispielsweise über sein Smartphone einschaltet. Im Fall eines unwillkommenen Eindringlings kann die Lampe einen Alarm an den Besitzer, seine Nachbarn oder die Polizei absetzen oder im „Fight-Back-Modus“ den Einbrecher mit rotem Blitzlicht zu vertreiben versu-chen.
Wie in Abbildung 1 zu sehen ist, sind die Pfeile bidirektional gezeichnet. Das heisst, dass die fünf Ebenen nicht unabhängig voneinander erstellt werden können. Eine werthaltige IoT-Lösung ist in der Regel nicht die reine Addition der Ebenen, sondern eine bis in die physische Ebene hineinreichende Integration (Fleisch et al., 2015, S. 447).
Wie in Abbildung 1 zu sehen ist, sind die Pfeile bidirektional gezeichnet. Das heisst, dass die fünf Ebenen nicht unabhängig voneinander erstellt werden können. Eine werthaltige IoT-Lösung ist in der Regel nicht die reine Addition der Ebenen, sondern eine bis in die physische Ebene hineinreichende Integration (Fleisch et al., 2015, S. 447)


== Anwendungsbereiche ==
Das Konzept der Industrie 4.0, welches mit dem Internet of Things Menschen, Maschinen und Objekte in Echtzeit miteinander vernetzt, bietet „enorme Chancen zur Automatisierung von Fabriken, Ressourcen- und insbesondere Energieeinsparungen und Entlastung von Routinetätigkeiten und schwerer Arbeit“ (Pampel, 2018, S.22). Dies kann zu einer höheren Profitabilität und steigenden Umsätzen führen.
Außerdem führt gemäss der „Studie Internet of Things 2020“ von IDG, die Vernetzung von Maschinen und Produkten zu geringeren Ausfallzeiten und erreicht eine höhere Auslastung, einen schnelleren ROI, ein besseres Image und einen höheren Innovationsgrad (Computerwoche, online).
„Die Digitalisierung der Fabriken erlaubt auch eine stärkere Integration in die gesamte Wertschöpfungskette zur schnelleren und individuelleren Erfüllung von Kundenwünschen“ (Pampel, 2018, S. 22).


IoT kann somit vieles heissen. Es gibt wie bereits gesehen auch keine klare Begriffsdefinition. Eine Studie der Boston Consulting Group versuchte herauszufinden, welche Technologien die vielversprechendsten Anwendungsmöglichkeiten bieten. Diese sind unter anderem (Bhatia et al., 2017, S. 2ff, eigene Übersetzungen):


'''Predictive Maintenance'''<br>
Unternehmen verlieren viel Geld, wenn ihre Maschinen und ihre Ausrüstung nicht funktioniert und sie Ersatzteile organisieren müssen. Ausserdem ist es ineffizient fixe Wartungsintervalle einzuhalten, welche unter Umständen gar nicht nötig gewesen wären. Mittels IoT kann die Maschine selbstständig eine nötige Wartung ausfindig machen und so Stillstände in der Fabrik vermeiden.


'''Selbstoptimierende Produktion'''<br>
Miteinander vernetzte Fabriken und Werkstätten können mittels IoT den Produktionsprozess in Echtzeit überwachen, automatisch Anpassungen vornehmen und so die Qualität und die Effizienz steigern, während Abfall reduziert wird.


== Anwendungsbereiche ==
'''Automatisiertes Lagermanagement'''<br>
Das IoT hat unzählige Anwendungsbereiche, denn das Potenzial ist praktisch unbegrenzt. Das IoT verbindet Wertschöpfungsketten zu Netzwerken und findet Lösungen in einer immer kom-plizierteren Umwelt. Dies kann das IoT deshalb, weil es an jedem Punkt der Wertschöpfungskette die relevanten Daten schnell integrieren kann (Erner, 2019, S. 48).  
IoT ermöglicht eine viel tiefere Einsicht in die Lagerbestände und die Supply Chain. So können die Unternehmen den Ort und Zustand (wie z.B. Temperatur, Feuchtigkeit oder Schäden) ihres Inventars überwachen. Dank der Fähigkeit die Supply Chain zu überwachen, können Prozess- und Reaktionszeiten verkürzt werden und so Lieferengpässe und zu grosse Lagerbestände vermieden werden, wodurch der Just in Time Prozess verbessert wird.


''Beispiel 1''<br>
'''Smart Meters'''<br>
Mittels smarten Sensoren können Bestand und Verbrauch von Gütern, wie Elektrizität, Gas oder Wasser in Echtzeit überwacht werden. Dadurch kann der Konsument seinen Verbrauch überprüfen, die Anzahl Techniker für das Ablesen der Zähler wird reduziert und es ermöglicht ein dynamisches Pricing.


«Das System erkennt datenbasiert und in „realtime“, dass ein Lieferant im Netzwerk nicht in der Lage sein wird, rechtzeitig zu liefern. Somit wird automatisch und sofort eine Suche nach einem alternativen und lieferfähigen Lieferanten innerhalb des Netzwerks gestartet und diesem ein entsprechender Auftrag erteilt. Damit kann gesichert werden, dass der Produktionsplan keine Unterbrechung erleidet. Auf diese Weise werden die Produktion des Herstellers/des Kunden und seine Liefertreue abgesichert, was wiederum dessen Kunden zugutekommt» (Er-ner, 2019, S. 48).
'''Flottenmanagement'''<br>
In Ergänzung zur Überwachung von Inventar und Paketen, können mittels IoT auch Fahrzeuge in Echtzeit überwacht werden. Mit besseren Informationen zum Aufenthaltspunkt der Flotte, deren Benutzung und des Zustands, können Unternehmen effizienter sein, weniger Wartungs- und Reparaturkosten verursachen und dynamisches Umleiten nutzen, um Verzögerungen und Staus zu vermeiden.


''Beispiel 2''<br>
Nebst diesen Beispielen sieht die Boston Consulting Group weitere Anwendungsmöglichkeiten bei vernetzten Fahrzeugen, Fernüberwachung von Patienten oder Bereitstellung von «demand response»-Programmen, welche aus der Ferne und automatisiert verschiedenste Applikationen wie Klimaanlagen, Waschmaschinen oder andere energieintensive Haushaltsgeräte starten, wann immer der Anwender dies wünscht.


«In der Transportlogistik verbessert das IoT nicht nur die Materialflüsse, sondern auch die globale Positionierung und automatische Identifikation der Fracht. Es erhöht ausserdem die Energieeffizienz und verringert den Energieverbrauch. Zusammenfassend wird das IoT mass-gebliche Veränderungen in der globalen Supply Chain mittels intelligenter Frachtbewegung er-möglichen. Dies wird erreicht durch konstante Synchronisation der Supply Chain Informatio-nen und Echtzeit-Verfolgung von Objekten. Dies macht die Supply Chain transparent, sichtbar und kontrollierbar und ermöglicht somit die intelligente Kommunikation zwischen Personen und der Fracht/den Gütern» (Bassi et al., 2013, S. 3. eigene Übersetzung).
== Anwendungsbereiche im Controlling ==
Durch die Digitalisierung und das Internet of Things verändert sich somit auch die Rolle des Controllings. Trotz der immensen Datenmengen, welche heute generiert werden, kann durch die Automatisierung immer mehr Zeit eingespart werden. Das Controlling wird dadurch nicht überflüssig, im Gegenteil, es erhält einen neuen Stellenwert im Unternehmen. So agiert das Controlling heute als Business Partner. Durch das ganze Wissen in Bezug auf die umfassenden Daten, welche das Controlling analysiert und interpretiert, gewinnt dessen Position für die Unternehmung an Bedeutung bei strategischen und planerischen Entscheiden. Aufgrund dieses Wandels wird vom Controlling auch immer mehr Flexibilität erfordert. Die generierten Daten müssen somit schnell und zuverlässig ausgewertet werden. Dies macht das Controlling nicht nur zu Business Partnern, sondern erfordert zunehmend auch vertiefte IT-Kenntnisse (Egle & Keimer, 2017, S.20).


Zu den Grundlagen eines gut funktionierenden Controllingsystems gehört ein gut vernetztes, umfassendes und integriertes Informationssystem, welches ständig neue Daten generiert und diese für die entsprechenden Analysen und Anwendungen zur Verfügung stellt (Egle & Keimer, 2017, S.14). Das IoT ist somit eigentlich überall präsent, wo Daten generiert, gesammelt und zur Verarbeitung und Analyse weitergegeben werden. So betrifft dies auch viele Bereiche des Controllings:


== Anwendungsbereiche im Controlling ==
'''Enterprise Resource Planing'''<br>
Gemäss Pampel (2017) ist es nicht primär die Aufgabe des Controllings sich mit den unmittelbaren Potenzialen der digitalen Technologien zu befassen. Vielmehr fokussiert sich das Controlling auf die wirtschaftlichen Auswirkungen dieser Technologien. Pampel unterscheidet dabei drei wesentliche Probleme, welche das Controlling zu lösen hat (S. 21):
Verwaltung der Ressourcen und Finanzdaten: Umsatz und Absatzdaten, welche beispielsweise aufgrund von Bestandsänderungen im Lager oder aufgrund von Produktionsmengen generiert und zur Analyse verwendet werden können (Egle & Keimer, 2017, S.14).


=== Innovationsproblem ===
'''Business Intelligence'''<br>
Das Controlling muss sich mit Business Model Innovation (BMI)und den dazugehörigen Management-Instrumenten wie Design Thinking, Open Innovation, Business Canvas etc. auseinandersetzen und ein Grundverständnis dafür entwickeln. Die durch die BMI entwickelten neuen Geschäftsmodelle werden durch die Digitalisierung technologisch ermöglicht. Dennoch besteht ein Grossteil der Innovation im Design von neuen Prozessen und Strukturen, für welche es noch keine Erfahrungswerte gibt. Die Aufgabe des Controllers ist es, die Grundstruktur für die Beurteilung der Erfolgsaussichten dieser neuen Geschäftsmodelle herauszuarbeiten (Pampel, 2017, S. 22-23).
Dient als Controllingwerkzeug, womit interne wie auch externe Daten aufbereitet und harmonisiert werden, welche für weitere Planungs- und Entscheidungsprozesse hilfreich sein können. Auch hier können die Daten u.a. durch IoT generiert worden sein (Egle & Keimer, 2017, S.15).


=== Skalierung- und Performanceproblem ===
'''Supply Chain Management'''<br>
Die zentrale Aufgabe des Controllings ist es, ein Performance Management für relevante Unternehmensaktivitäten zu gewährleisten. Abb. 1 zeigt mögliche strategische und operative Erfolgsfaktoren und Steuerungsgrössen von neuen, digitalen Geschäftsmodellen, wie z.B. die Skalierbarkeit (Entkoppelung von Marktwachstum und Personalkosten infolge der Automatisierung), das Timing (Analyse der Reife des Konzepts sowie des Wettbewerbs), das Change Management (besonders dann, wenn bei den eigenen Mitarbeitenden und Partnern des Unternehmens die Akzeptanz für die Innovation erst noch gewonnen werden muss) und weitere gemäss Abb. 1 (Pam-pel, 2017, S.24).
Dabei geht es darum, die Geschäftsprozesse innerhalb der Lieferkette zu optimieren und den Informationsaustausch zwischen Lieferanten und Kunden zu gewährleisten (Egle & Keimer, 2017, S.16). IoT kann bspw. dazu beitragen, dass Bedarfsinformationen der Kunden direkt dem Lieferanten gemeldet werden und so automatisch eine Bestellung ausgelöst wird.
'''Customer Relationship Management'''<br>
Durch IoT können hier Kundenbedürfnisse und -interaktionen direkt in den Filialen erfasst und zur Analyse weitergeleitet werden. So kann das Angebot besser auf die Kundenwünsche abgestimmt und optimiert werden (Egle & Keimer, 2017, S.17).


=== Strategieproblem ===
'''Big Data Analytics'''<br>
Beim Übergang vom analogen zum neuen, digitalen Geschäftsmodell sind Ressourcenknapphei-ten durch die Konkurrenz zwischen dem bisherigen und dem neuen Geschäftsmodell zu Vermeiden. Ausserdem birgt die BMI immer auch das Risiko von anfänglichen Fehlern oder geringer Akzeptanz bisheriger Kunden. Deshalb erhalten neue Geschäftsmodelle in den Unternehmen oft zu wenig Aufmerksamkeit. Dieser Effekt wird verstärkt, je grösser das Kannibalisierungspotenzial des neuen Geschäftsmodells gegenüber dem Alten ist. Dabei gilt es psychologische Barrieren zu durchbrechen, wobei das neutrale Controlling, dass sowohl die aktuelle Performance der Ge-schäftsfelder, wie auch deren strategische Bewertung in Zukunft berücksichtigt, eine zentrale Rolle spielt (Pampel, 2017, S. 25-27).
Erst durch Big Data Analytics wird es möglich, die durch das IoT generierten, riesigen Datenmengen zu strukturieren und analysieren, um schlussendlich die richtigen Schlüsse aus den Daten zu ziehen und Prozesse und Produkte zu optimieren (Egle & Keimer, 2017, S.17).


== Phasen der BMI und Instrumente des Controllings ==
Es ist jedoch nicht primär die Aufgabe des Controllings sich mit den unmittelbaren Potenzialen der digitalen Technologien zu befassen. Vielmehr fokussiert sich das Controlling auf die wirtschaftlichen Auswirkungen dieser Technologien. Pampel unterscheidet dabei drei wesentliche Probleme, welche das Controlling zu lösen hat (Pampel, 2017, S. 21):
Die Abb. 2 zeigt verschiedene Phasen eines typischen Business Model Innovation-Ablaufs und die dazugehörigen Controlling-Instrumente. In der Ideenphase kann das Controlling mit klassi-schen Analysen von Markentwicklungen und der eigenen Performance diejenigen Geschäftsbe-reiche herausfiltern, die von disruptiven Veränderungen betroffen sind. Ausserdem kann sich das Controlling in dieser Phase kritisch mit ersten Ideen zur Digitalisierung auseinandersetzen (Pampel, 2017, S. 27-28).


Nach Durchführung von Marktanalysen und ersten Konzeptentwürfen beginnt das Controlling auf Basis der Business Canvas erste Kalkulationen z.B. in Excel zu erfassen (Pampel, 2017, S. 28).  
'''Innovationsproblem'''<br>
Das Controlling muss sich mit Business Model Innovation (BMI) und den dazugehörigen Management Instrumenten wie Design Thinking, Open Innovation, Business Canvas etc. auseinandersetzen und ein Grundverständnis dafür entwickeln. Die durch die BMI entwickelten neuen Geschäftsmodelle werden durch die Digitalisierung technologisch ermöglicht. Dennoch besteht ein Grossteil der Innovation im Design von neuen Prozessen und Strukturen, für welche es noch keine Erfahrungswerte gibt. Die Aufgabe des Controllers ist es, die Grundstruktur für die Beurteilung der Erfolgsaussichten dieser neuen Geschäftsmodelle herauszuarbeiten (Pampel, 2017, S. 22-23).


Der Investitionsentscheid wird durch Investitionsrechnungen unterstützt. Bei der Implementie-rung ist ein Projektcontrolling durchzuführen. Anschliessend wird ein Performance Management auf Basis der in Abb 1. gezeigten Erfolgsfaktoren und Steuerungsgrössen geführt. Weitere Tools sind echtzeitorientierte Forecasts sowie Predictive Analytics (Pampel, 2017, S. 28).
'''Skalierung- und Performanceproblem'''<br>
Die zentrale Aufgabe des Controllings ist es, ein Performance Management für relevante Unternehmensaktivitäten zu gewährleisten. Auf strategischer Seite ist es wichtig, dass der Controller die nationalen und internationalen Geschäftspotenziale der Innovationen erkennt und richtig einschätzt. Er muss sich ausserdem mit der Skalierbarkeit des neuen Geschäftsmodell, sowie dem richtigen Timing für die Implementierung auseinandersetzen. Sofern die Akzeptanz noch nicht gegeben ist, muss er mittels Change Management versuchen, die Partner und Mitarbeiter von den digitalen Geschäftsmodellen zu überzeugen. Auf operativer Seite muss der Controller die Implementierung mittels Meilensteinen, Budgets und Finanzierungsrechnungen begleiten. Während der Wachstumsphase ist es von Bedeutung, dass die wichtigsten Kenngrössen über den Markterfolg, die Skaleneffekte, die Erfahrungskurve aber auch über die Qualität und Steuerbarkeit (Forecast-Qualität, Big-Data-Nutzung) analysiert werden. Daneben sind die klassischen Erlös-, Kosten- und Ergebnisrechnungen zu tätigen. Ausserdem muss der Controller laufend diverse Risiken, wie das Technologie-, Markt-, Rechts- oder operative Risiko beurteilen und einschätzen können (Pampel, 2017, S.24).


'''Strategieproblem'''<br>
Beim Übergang vom analogen zum neuen, digitalen Geschäftsmodell sind Ressourcenknappheiten durch die Konkurrenz zwischen dem bisherigen und dem neuen Geschäftsmodell zu vermeiden. Ausserdem birgt die Business Model Innovation immer auch das Risiko von anfänglichen Fehlern oder geringer Akzeptanz bei bisherigen Kunden. Deshalb erhalten neue Geschäftsmodelle in den Unternehmen oft zu wenig Aufmerksamkeit. Dieser Effekt wird verstärkt, je grösser das Kannibalisierungspotenzial des neuen Geschäftsmodells gegenüber dem Alten ist. Dabei gilt es psychologische Barrieren zu durchbrechen, wobei das neutrale Controlling, dass sowohl die aktuelle Performance der Geschäftsfelder wie auch deren strategische Bewertung in Zukunft berücksichtigt, eine zentrale Rolle spielt (Pampel, 2017, S. 25-27).


== Forecast und Predictive Analytics ==
== Forecast und Predictive Analytics ==
Laut Stich (2015, S. 17-18) ist das Controlling heute oft retrospektiv auf Produkte und Produktion ausgerichtet. Insbesondere neue Formen der Wertschöfpung wie nachgelagerte digitale Dienst-leistungen können so nur schwer erfasst werden. Das Controlling wird sich deshalb in Zukunft nebst den klassischen Datenquellen auch mit der echtzeitbasierten und kontinuierlichen Auswer-tung der Daten beschäftigen. Aufgrund dieser Datenbasis werden Vorhersagen (Forecasts) abge-leitet. Neu werden so auch nicht-finanzielle KPIs mittels [[Big Data]] Analysen ermittelt werden. Nicht-monetäre Kennzahlen werden an Bedeutung gewinnen. Ausserdem werden die Produktionsdaten mit weiteren in- und externen Daten, wie Social-Media-Analysen, Analysen von volks-wirtschaftlichen Entwicklungen oder Wettbewerbsanalysen ergänzt.
Das Controlling ist heute oft retrospektiv auf Produkte und Produktion ausgerichtet. Insbesondere neue Formen der Wertschöfpung wie nachgelagerte digitale Dienstleistungen können so nur schwer erfasst werden. Das Controlling wird sich deshalb in Zukunft nebst den klassischen Datenquellen auch mit der echtzeitbasierten und kontinuierlichen Auswertung der Daten beschäftigen. Aufgrund dieser Datenbasis werden Vorhersagen (Forecasts) abgeleitet. Neu werden so auch nicht-finanzielle KPIs mittels Big Data Analysen ermittelt werden. Nicht-monetäre Kennzahlen werden an Bedeutung gewinnen. Ausserdem werden die Produktionsdaten mit weiteren in- und externen Daten, wie Social-Media-Analysen, Analysen von volkswirtschaftlichen Entwicklungen oder Wettbewerbsanalysen ergänzt (Stich, 2015, S. 17-18).
 
Nebst dem Forecasting wird auch Predictive Analytics einen wichtigen Bestandteil von modernem Controlling darstellen. Predictive Analytics wird wie folgt beschrieben: «Dank moderner Funktionen verarbeiten Predictive-Analytics-Werkzeuge auch Big Data, also umfangreiche, polystrukturierte Datenmengen, und liefern Informationen über Zukunftswerte. [[Datei:BI_Anwendungsklassen.png|miniatur|300px|Abb. 2: Business-Intelligence Anwendungsklassen (Iffert, 2016, S. 18)]] Sie beantworten Fragen wie ‘Was wird mit welcher Wahrscheinlichkeit unter welchen Voraussetzungen passieren? ’ oder ‘Was sollte passie-ren? ’» (Iffert, 2016, S. 17).


Nebst dem Forecasting wird auch Predictive Analytics einen wichtigen Bestandteil von modernem Controlling darstellen. Iffert (2016, S. 17) beschreibt [[Predictive Analytics]] wie folgt: «Dank moderner Funktionen verarbeiten Predictive-Analytics-Werkzeuge auch [[Big Data]], also umfangreiche, polystrukturierte Datenmengen, und liefern Informationen über Zukunftswerte. Sie beantworten Fragen wie ‘Was wird mit welcher Wahrscheinlichkeit unter welchen Voraussetzungen passie-ren?’ oder ‘Was sollte passieren?’.»


Abb. 3 zeigt, wie sich das vergangenheitsbezogene Reporting hin zur Analyse von echtzeitbasierten Daten und der daraus abgeleiteten Forecasts und Planungen wandelt, was sowohl den Frei-heitsgrad für den Anwender, als auch die Komplexität der eingesetzten Instrumente ansteigen lässt.
Abb. 2 zeigt, wie sich das vergangenheitsbezogene Reporting hin zur Analyse von echtzeitbasierten Daten und der daraus abgeleiteten Forecasts und Planungen wandelt, was sowohl den Freiheitsgrad für den Anwender, als auch die Komplexität der eingesetzten Instrumente ansteigen lässt.
 


{| class="wikitable"
|-
| '''Enterprise Resource Planing''' || ''Verwaltung der Ressourcen und Finanzdaten:''
Umsatz und Absatzdaten, welche beispielsweise aufgrund von Bestandesänderungen im Lager oder aufgrund von Produktionsmengen generiert und zur Analyse verwendet werden können. (U, Egle & I, Keimer, 2017, S.14)
|-
| '''Business Intelligence''' || ''Controllingwerkzeug:''
Dadurch können interne wie auch externe Daten aufbereitet und harmonisiert werden, welche für weitere Planungs- und Entscheidungsprozesse hilfreich sein können. Auch hier können die Daten u.a. durch IoT generiert worden sein. (U, Egle & I, Keimer, 2017, S.15)
|-
| '''Supply Chain Management''' || ''Geschäftsprozesse innerhalb der Lieferkette:''
Hier geht es um den optimalen Informationsaustausch zwischen Lieferanten und Kunden. (U, Egle & I, Keimer, 2017, S.16). IoT kann bspw. dazu beitragen, dass Bedarfsinformationen der Kunden direkt dem Lieferanten gemeldet und so eine Bestellung ausgelöst werden kann.
|-
| '''Customer Relationship Management''' || ''Verfolgen der Kundeninteraktionen:''
Durch IoT können hier Kundenbedürfnisse direkt in den Filialen erfasst und zur Analyse weitergeleitet werden. So kann das Angebot besser auf die Kundenwünsche abgestimmt und optimiert werden.
(U, Egle & I, Keimer, 2017, S.17)
|-
| '''[[Big Data]] Analytics''' || ''Methoden und Verfahren für vielfältige Analyseprozesse:''
Durch Big Data Analytics wird es erst möglich, die durch das IoT generierten Daten zu strukturieren und analysieren, um schlussendlich die entsprechenden Schlüsse aus den Daten zu ziehen und Prozesse, Produkte etc. zu optimieren.
(U, Egle & I, Keimer, 2017, S.17)
|}


== Chancen und Herausforderungen ==
== Chancen und Herausforderungen ==
Durch die Einführung von 5G hat die Vernetzung der Geräte ein neues Ausmass erreicht. Die hohe Geschwindigkeit der Verbindung bietet auch für Unternehmen neue Möglichkeiten der Vernetzung und des Trackings. Nachfolgende werden Chancen aber auch Herausforderungen der ständig besser werdenden Vernetzung aufgezeigt:
Durch die Einführung von 5G hat die Vernetzung der Geräte ein neues Ausmass erreicht. Die hohe Geschwindigkeit der Verbindung bietet auch für Unternehmen neue Möglichkeiten der Vernetzung und des Trackings. Nachfolgend werden Chancen aber auch Herausforderungen der ständig besser werdenden Vernetzung aufgezeigt:
 


{| class="wikitable"
{| class="wikitable"
Zeile 206: Zeile 182:
* Neue Geschäftsmodelle
* Neue Geschäftsmodelle
* Integration der Wertschöpfungskette
* Integration der Wertschöpfungskette
(Unterlagen aus dem Unterricht)
(Unveröffentlichtes Unterrichtsskript)
|-
|-
| '''Für Privatpersonen''' ||
| '''Für Privatpersonen''' ||
Zeile 221: Zeile 197:
|-
|-
| '''Für Unternehmen''' ||
| '''Für Unternehmen''' ||
* Noch zu wenig Angaben zum Kosten und Zeitaufwand für Implementierung
* Noch zu wenig Angaben zu Kosten und Zeitaufwand für Implementierung
* Überforderung bei technischen Gegebenheiten
* Überforderung bei technischen Gegebenheiten
* Gefahr von Cyberangriffen, wenn nicht regelmässige Siche-rung/Aktualisierung erfolgt
* Gefahr von Cyberangriffen, wenn nicht regelmässige Siche-rung/Aktualisierung erfolgt
Zeile 237: Zeile 213:


== Lern- und Praxismaterialien ==
== Lern- und Praxismaterialien ==
{| class="wikitable"
|-
!Fallbeispiele !! Aufgaben
|-
| [[Smart Factory]] || [[Datenbasierte Dienstleistungen]] - Kaffee AG
|}
== Quellen ==


=== Literaturverzeichnis ===


* Bhatia, A., Hunke, N., Kalra, N., Rüssmann, M., Schmied, F., & Yusuf, Z. (2017). Winning in IoT. It’s all about the business processes. Abgerufen am 09.05.2020 von https://image-src.bcg.com/Images/BCG-Winning-IoT-Jan-2017_tcm9-161204.pdf [https://elearning.hslu.ch/ilias/goto.php?target=file_4476962_download&client_id=hslu]


* Computerwoche (2020). Studie Internet of Things 2020. Abgerufen am 13.03.2020 von https://shop.computerwoche.de/portal/studie-internet-of-things-2020-pdf-download- direkt-im-shop-9605


== Quellen ==
* Egle, U., & Keimer, I.,(2017). Digitaler Wandel im Controlling. Schriften aus dem Institut für Finanzdienstleistungen Zug IFZ. Band 37. Zug: Verlag IFZ – Hochschule Luzern [https://elearning.hslu.ch/ilias/goto.php?target=file_4476955_download&client_id=hslu]


=== Literaturverzeichnis ===
* Egle, U. (2020) Operatives und strategisches Controlling. [unveröffentlichtes Unterrichtsskript], Hochschule Luzern Wirtschaft.[https://elearning.hslu.ch/ilias/goto.php?target=file_4476952_download&client_id=hslu]


* Fleisch, E., Weinberger, M. & Wortmann, F. (2015). [https://link.springer.com/article/10.1007/BF03373027 Geschäftsmodelle im Internet der Dinge]. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung, 67, S. 444-465. doi: https://doi.org/10.1007/BF03373027


Fleisch, E., Weinberger, M. & Wortmann, F. (2015). Geschäftsmodelle im Internet der Dinge. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung, 67, S. 444-465.  
* HewlettPackard Enterprise. Was ist das Internet der Dinge. Abgerufen am 12.03.2020 von https://www.hpe.com/ch/de/what-is/internet-of-things.html
doi: https://doi.org/10.1007/BF03373027


Hellfeld, Dr. Stefan. (2016, 26. Januar). IoT 4.0: Was kommt nach dem Internet of Things? Informatik Aktuell. Abgerufen am 19.03.2020 von https://www.informatik-aktuell.de/betrieb/netzwerke/iot-40-was-kommt-nach-dem-internet-der-dinge.html
* Horváth, P. (2017) [https://link.springer.com/chapter/10.1007/978-3-658-16042-5_6 Geschäftsmodellinnovationen durch Digitalisierung – Neue Herausforderungen an den Controller]. In W. Burr & M. Stephan (Hrsg.). Technologie, Strategie und Organisation (S. 113-125). Wiesbaden: Springer Gabler.


HewlettPackard Enterprise. Was ist das Internet der Dinge. Abgerufen am 12.03.2020 von https://www.hpe.com/ch/de/what-is/internet-of-things.html
* Huber, D., & Kaiser, T. (2015). [https://link.springer.com/article/10.1365/s40702-015-0169-6 Wie das Internet der Dinge neue Geschäftsmodelle ermöglicht]. HMD Praxis der Wirtschaftsinformatik, 52(5), 681–689. doi: https://doi.org/10.1365/s40702-015-0169-6


Horváth, P. (2017) Geschäftsmodellinnovationen durch Digitalisierung – Neue Herausforderun-gen an den Controller. In W. Burr & M. Stephan (Hrsg.). Technologie, Strategie und Organisation (S. 113-125). Wiesbaden: Springer Gabler.
* Iffert, L. (2016). [https://link.springer.com/chapter/10.1007/978-3-658-13444-0_2 Predictive Analytics richtig einsetzen. Controlling & Management Review], 16 (Sonderheft 1), S. 16-23.


Huber, D., & Kaiser, T. (2015). Wie das Internet der Dinge neue Geschäftsmodelle ermög-licht. HMD Praxis der Wirtschaftsinformatik, 52(5), 681–689.
* KMU-Portal. Internet of Things. Zuletzt abgerufen am 19.03.2020 von https://www.kmu.admin.ch/kmu/de/home/fakten-trends/internet-of-things.html
doi: https://doi.org/10.1365/s40702-015-0169-6


Jeschke, S., Brecher, C., Meisen, T., Özdemir, D. & Eschert, T. (2017) Industrial Internet of Things and Cyber Manufacturing Systems. In S. Jeschke, C. Brecher, H. Song, & D. B. Rawat Industrial Internet of Things (S. 3-19). Cham: Springer.  
* Pampel, J. R. (2017). [https://www.beck-elibrary.de/10.15358/0935-0381-2017-2-21/digitale-horizonterweiterung-jahrgang-29-2017-heft-2?l=de Digitale Horizonterweiterung. Controlling, 29] (2), S. 21-29.


KMU-Portal. Internet of Things. Zuletzt abgerufen am 19.03.2020: https://www.kmu.admin.ch/kmu/de/home/fakten-trends/internet-of-things.html
* Pampel, J. R. (2018) [https://www.beck-elibrary.de/10.15358/0935-0381-2018-S-20/digitale-horizonterweiterung-begleitung-der-innovation-von-geschaeftsmodellen-durch-das-controlling-jahrgang-30-2018-heft-s Digitale Horizonterweiterung – Begleitung der Innovation von Geschäftsmodellen durch das Controlling]. Controlling, 30, S. 20-29.


Pampel, J. R. (2018) Digitale Horizonterweiterung – Begleitung der Innovation von Ge-schäftsmodellen durch das Controlling. Controlling, 30, S. 20-29.
* Sinsel, A. (2020). Smart Manufacturing. In A. Sinsel (Hrsg.). [https://www.springer.com/de/book/9783662597606 Das Internet der Dinge in der Produktion] (S. 1-35). Berlin: Springer Vieweg.


Sinsel, A. (2020). Smart Manufacturing. In A. Sinsel (Hrsg.). Das Internet der Dinge in der Produktion (S. 1-35). Berlin: Springer Vieweg.
* Stich, V. (2015). [https://link.springer.com/article/10.1007/s12176-015-0606-y «Controller müssen ihre Anpassungsfähigkeit unter Beweis stellen»]. Controlling & Management Review, 15 (5), S. 16-20.


=== Weiterführende Literatur ===
=== Weiterführende Literatur ===
* Egle, U., & Keimer, I., (Hrsg.). (2020). [https://www.springer.com/de/book/9783658291952 Die Digitalisierung der Controlling-Funktion: Anwendungsbeispiele aus Theorie und Praxis]. Gabler Verlag. https://doi.org/10.1007/978-3-658-29196-9
* Gassmann, O., Frankenberger, K., & Csik, M. (2017). Geschäftsmodelle entwickeln: 55 innovative Konzepte mit dem St. Galler Business Model Navigator (2.). München: Carl Hanser Verlag GmbH & Co. KG.
* Heimel, J. & Müller, M. (2019). [https://www.springerprofessional.de/controlling-4-0/16318060 Controlling 4.0. Wie veränderte Datenverfügbarkeit und Analysemöglichkeiten das Controlling erneuern]. In M. Erner (Hrsg.). [https://link.springer.com/book/10.1007/978-3-662-57963-3 Management 4.0 – Unternehmensführung im digitalen Zeitalter (S. 389-430).] Berlin, Heidelberg: Springer.
* Hellfeld, Dr. S. (2016, 26. Januar). IoT 4.0: Was kommt nach dem Internet of Things? Informatik Aktuell. Abgerufen am 19.03.2020 von https://www.informatik-aktuell.de/betrieb/netzwerke/iot-40-was-kommt-nach-dem-internet-der-dinge.html
* Jeschke, S., Brecher, C., Meisen, T., Özdemir, D. & Eschert, T. (2017) [https://link.springer.com/chapter/10.1007/978-3-319-42559-7_1 Industrial Internet of Things and Cyber Manufacturing Systems]. In S. Jeschke, C. Brecher, H. Song, & D. B. Rawat Industrial Internet of Things (S. 3-19). Cham: Springer.


* Fleisch, E., Weinberger M. & Wortmann, F. (2015). Geschäftsmodelle im Internet der Dinge. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung, 67 (4), S. 444–465.
* Universität St. Gallen (HSG). (2014, 30. September). Geschäftsmodelle und das Internet der Dinge. Abgerufen am 21.03.2020 von https://www.youtube.com/watch?v=6MrCr-52GLI&feature=youtu.be
* Heimel, J. & Müller, M. (2019). Controlling 4.0. Wie veränderte Datenverfügbarkeit und Analysemöglichkeiten das Controlling erneuern. In M. Erner (Hrsg.). [https://link.springer.com/book/10.1007/978-3-662-57963-3 Management 4.0 – Unternehmensführung im digitalen Zeitalter (S. 389-430).] Berlin, Heidelberg: Springer.


== Autoren ==
== Autoren ==
Zeile 275: Zeile 269:


[[Kategorie:Daten und Technologien]]
[[Kategorie:Daten und Technologien]]
[[Kategorie:Digital Controlling]]

Aktuelle Version vom 4. Dezember 2020, 10:53 Uhr

Geprüft: Positiv beurteilt

Das Internet prägt seit Jahrzenten die Unternehmungen auf allen Ebenen. Durch den Gebrauch des Internets haben sich neue, innovative Geschäftsmodelle ergeben. Mit dem Internet of Things (IoT) steht die nächste Generation des Internets „vor der Tür“ (Fleisch, Weinberger & Wortmann, 2015, S. 445).

Die Idee ist die Ausweitung des Internets in die reale Welt hinein. Dementsprechend sollen Alltagsgegenstände bzw. "Things" zu Teilen des Internets werden. Diese „Things“ können Informationen generieren und weitergeben oder als Zugangspunkte zum Internet dienen, womit sich weitreichende Möglichkeiten eröffnen (Pampel, 2018, S. 21).

Das Internet der Dinge kommt bereits heute in vielen Geschäftsbereichen zur Anwendung. So zum Beispiel in Unternehmungen im Bereich „Industrie 4.0“, zu Hause mit dem „Smart Home“ aber auch in der Energiebranche mit „Smart Energy“ (Atzori/Iera/Morabito, 2010, S. 2793ff; Vermesan et al., 2014, S. 30ff. zit. in Fleisch et al., 2015, S. 446).

Durch die drahtlose Vernetzung und Kommunikation in Echtzeit steigert das IoT die Effizienz, senkt Kosten und spart Zeit ein.

Definition

Der Begriff Internet of Things (Deutsch: Internet der Dinge) oder abgekürzt IoT, beschreibt die Kombination der physischen mit der digitalen Welt.

Eine offizielle Definition gibt es jedoch nicht. "Sinnesgemäss wird es auch oft als die digitale Vernetzung beliebiger Gegenstände des Alltags auf der Basis standardisierter Internettechnologien beschrieben. Ziel dabei ist, dass die vernetzten Gegenstände in einer für den Menschen nützlichen Weise miteinander Daten austauschen und interagieren können“ (Sinsel, 2020, S.4).

Das Internet of Things ist bereits heute ein stetiger Begleiter im Alltag. Smartphones, Smartwatches, aber auch Fernseher und Kaffeeautomaten sind alles Geräte, welche ins IoT eingebunden sind. Durch die hohe Vernetzung können immer mehr strukturierte Daten (Big Data) generiert werden, welche anschliessend zu Analyse- und Optimierungszwecken verwendet werden (KMU-Portal, online). So ermöglicht die neue Technologie den Kundinnen und Kunden ergänzende Produkte oder auch sogenannte Ökosysteme anzubieten und so als ergänzendes Element zum Menschen zu fungieren. (Fleisch et al., 2015, S. 444).

Inzwischen übersteigt die Anzahl vernetzter Geräte, sogenannter «intelligenter Gegenstände» weltweit gar die Milliardengrenze (KMU-Portal, online).Dem gegenüber gibt es auch das «Internet of People» (IoP), welches für die Vernetzung der Personen steht (HewlettPackard Enterprise, online).

In vielen Fachliteraturen über das IoT stösst man zudem immer wieder auf den Begriff Industrial Internet of Things (IIoT) oder Industrie 4.0. Der Unterschied zwischen IoT und IIoT ist lediglich der Anwendungsbereich. Denn beispielhafte Anwendungsbereiche für das IoT sind im privaten Umfeld, Transport, Gesundheitswesen oder Smart Homes. Das IIoT hingegen, wie es der Name bereits sagt, bezieht sich auf industrielle Umgebungen.

Ziele

Die Idee dieser neuen Technologien besteht darin, die bestehenden Produkte mit Sensoren auszustatten, damit diese Daten über das Produkt selber und deren Nutzung sowie die Umwelt sammeln. Auch die Verknüpfung mit anderen „smarten“ Produkten wird dadurch möglich.

Für den Nutzer selbst, soll sich durch diese Sensoren keinen Nachteil in deren Nutzung zeigen. Diese Sensoren werden unauffällig platziert, so dass sie vom Menschen kaum wahrgenommen werden. Denn das Produkt selber (z.B. eine Glühbirne) soll weiterhin seiner ursprünglichen Verwendung dienen (Vermesan et al., 2014; Yoo/Henfridsson/Lyytinen, 2010, S. 724f.zit. in Fleisch et al., 2015, S. 445).

Die Ziele vom IoT decken sich stark mit den Zielen der Digitalisierung. So hat das IoT folgende Ziele (Informatik-aktuell, online):

  • Automatisierung von Abläufen: Durch die Automatisierung kann die Effizienz gesteigert und Ressourcen eingespart werden, was wiederum auch Zeit spart.
  • Sicherung der Nachhaltigkeit: Warnsysteme können alarmieren und Einfluss nehmen, bevor ein grösserer Schaden entsteht. So können beispielsweise Geräte, bei welchen ein Defekt droht, frühzeitig warnen und Ersatz für das defekte Element fordern. Damit können grössere oder auch Folgeschäden verhindert werden.
  • Bessere Mensch-Maschinen-Interaktion: Durch Touchpanels wird vieles einfacher und intuitiver gestaltet. Über das Smartphone können beispielsweise Geräte in der Wohnung auch von auswärts gesteuert werden.
  • Höhere Sicherheit: Durch die Vernetzung der Dinge können Notsituationen früher bemerkt werden. Durch Mikrochips in der Skiausrüstung können Lawinenopfer schneller gefunden werden. Aber auch die boomenden Fitness-Tracker zur Überwachung des Herzschlages können schnell auf allfällige Notlagen hinweisen.

Internet of Things im Unternehmen

Einfluss auf Geschäftsmodelle

Mit dem Trend der digitalen Transformation Schritt zu halten ist essentiell. Dazu setzen sich Unternehmen laufend mit der Gestaltung neuer Geschäftsmodelle sowie der Verbindung von neuen technologischen Ideen, welche sich positiv auf den wirtschaftlichen Erfolg auswirken, auseinander (Fleisch et al., 2015, S. 445).

Jedoch herrscht bei den Unternehmungen nach wie vor eine gewisse kritische Haltung gegenüber neuartigen Technologien. Es besteht noch immer eine grosse Unsicherheit bezüglich des gewinnbringenden Einsatzes solcher Technologien, auch wenn diese den Horizont der neuartigen Geschäftsmodelle erweitern mögen (Fleisch et al., 2015, S. 444–445).

Gestaltung neuer Geschäftsmodelle

Durch das Internet der Dinge können bestehende Muster von Geschäftsmodellen erweitert und/oder eigenständige Geschäftsmodelltypen erschaffen werden (Horváth, 2017, S.119).

Zwei Beispielkategorien für eigenständige Geschäftsmodelltypen im Internet der Dinge sind:

Digitally charged Products Physische Produkte wie z.B. eine LED-Lampe hat für den Anwender nicht nur den Nutzen des Lichts, sondern wird mit neuen Sensor-basierten digitalen Dienstleistungsbündel „aufgeladen“ und mit neuem Wertversprechen positioniert (Fleisch, et al., 2015, S. 457). Ein Beispiel dazu ist die Sicherheitslösung der LED-Lampe, wie sie unter Punkt 4 "Wertschöpfungsstufen einer Anwendung im IoT" beschrieben wird.
Sensor as a Service Messwerte physischer Geräte werden als eigenständiges Gut gespeichert, aufbereitet und vermarktet (Horváth, 2017, S.119). Im Unterschied zu dem „Digitally charged Products“ sind die Daten die primäre Währung, die es zu bewirtschaften gibt (Fleisch, et al., 2015, S. 458).


Damit sich solch neue Geschäftsmodelle und die Gestaltung von Ökosystemen überhaupt umsetzen lassen, sind die Vorlieben und Wünsche der Kundinnen und Kunden von grosser Bedeutung. Dank der immer stärker werdenden Vernetzung der Gesellschaft durch den Gebrauch von sozialen Netzwerken stehen somit grosse Datenmengen über die Interessen der Nutzer zeitnah in «real time» zur Verfügung, an welchen man sich bedienen kann. Da natürlich nicht alle Informationen dieser Datenflut für die Unternehmung von Relevanz sind besteht die Herausforderung darin, die wichtigen und relevanten Informationen herauszufiltern, diese miteinander zu kombinieren und somit große Datenmengen in intelligente Erkenntnisse zu verwandeln (Huber & Kaiser, 2015, S. 685–686).

Integration von IoT in die Unternehmung

Wie auch unser Ökosystem der Umwelt und Natur bildet auch das IoT eine Art Ökosystem. Einzelne Anwendungen werden aufeinander abgestimmt, und zu einem grossen Ganzen zusammengefasst.

An erster Stelle steht dabei die Ermittlung der, fürs Unternehmen, passenden Plattform über welche die Daten gewonnen und ausgetauscht werden. Dabei ist es gleichzeitig auch von Bedeutung eine Strategie und Ziele zu definieren, was mit IoT erreicht werden will und was aus den Daten gewonnen werden soll.

Auch die Maschinen und die ganzen IT-Systeme müssen auf IoT umgerüstet werden, damit es überhaupt möglich wird die Daten zu generieren und anschliessend auszuwerten. Das heisst die Maschinen und Geräte müssen miteinander kommunizieren, nicht nur mit internen Geräten, sondern beispielsweise auch mit Geräten bei Lieferanten und Kunden. So können die Daten in Echtzeit ausgetauscht und anschliessend auch verarbeitet werden.

Bei der Analyse ist es wichtig zu wissen, welche Information aus den Daten genau gewonnen werden sollen. Geht es darum, einen möglichst hohen Servicelevel bei Kunden und Lieferanten zu erreichen oder allenfalls die Bedürfnisse der Kunden besser zu kennen? Die Ziele des erhöhten Datenflusses sind unter anderem:

  • Steigerung des Kundenwerts
  • Reduktion der Kosten
  • Verbesserung Kommunikation zwischen Kunden und Lieferanten
  • Einfluss auf Umwelt

Wertschöpfungsstufen einer Anwendung im IoT

Im IoT erfolgt die Digitalisierung physischer Gegenstände durch die Ergänzung von IT auf mehreren Wertschöpfungsstufen. Diese fünf Ebenen (siehe Abb. 1) werden im folgenden Abschnitt am Beispiel einer LED-Lampe erklärt (Fleisch, et al., 2015, S. 446-447).

Abb. 1: Wertschöpfungsstufen einer Anwendung im IoT (Fleisch, et al., 2015, S. 447)

Ebene 1, Physisches Ding
Die erste Ebene des Wertschöpfungsmodells bildet ein physisches Ding, wie z.B. eine LED-Lampe. Der Nutzen dieser LED-Lampe für den Anwender ist das Licht.

Ebene 2, Sensor / Aktuator
Dem physischen Ding wird ein Minicomputer mit Sensorik und Aktuatorik hinzugefügt. Bei einer LED-Lampe misst ein Sensor, ob Menschen im Raum sind. Die Sensorik misst also lokale Daten. Der Aktuator hingegen liefert lokale Services und erzeugt damit lokalen Nutzen, indem der Aktuator die Lampe in Abhängigkeit der An- bzw. Abwesenheit der Menschen automatisch ein- und ausschaltet.

Ebene 3, Konnektivität
Dabei geht es um das Sicherstellen eines Zugangs zum Internet und damit des globalen Zugriffes. Somit kann die LED-Lampe über ein eingebautes Funkmodul ihren Zustand autorisierten Abonnenten auf der ganzen Welt bekanntgeben.

Ebene 4, Analytik
Diese Ebene sammelt, speichert, plausibilisiert und klassifiziert Sensordaten, webt Erkenntnisse anderer Webservices mit ein und errechnet Konsequenzen für die Aktuatorik. Im LED-Beispiel speichert Ebene 4 unter anderem die Ein- und Ausschaltzeiten von Lampen in einem Haushalt, klassifiziert Bewegungsmuster und führt die Betriebsstunden einzelner Lampen auf.

Ebene 5, Digitaler Service
Bei der obersten Ebene werden die Möglichkeiten aus den unteren Ebenen in digitale Dienstleistungen strukturiert, in geeigneter Form gebündelt (als Webservice oder mobile Applikation) und global zur Verfügung gestellt. Erst hier wird aus der LED-Lampe mit Anwesenheitssensor eine Sicherheitslampe. Denn der Besitzer kann per Knopfdruck Anwesenheit vorspielen, indem er die Lampe beispielsweise über sein Smartphone einschaltet. Im Fall eines unwillkommenen Eindringlings kann die Lampe einen Alarm an den Besitzer, seine Nachbarn oder die Polizei absetzen oder im „Fight-Back-Modus“ den Einbrecher mit rotem Blitzlicht zu vertreiben versuchen.

Wie in Abbildung 1 zu sehen ist, sind die Pfeile bidirektional gezeichnet. Das heisst, dass die fünf Ebenen nicht unabhängig voneinander erstellt werden können. Eine werthaltige IoT-Lösung ist in der Regel nicht die reine Addition der Ebenen, sondern eine bis in die physische Ebene hineinreichende Integration (Fleisch et al., 2015, S. 447).

Anwendungsbereiche

Das Konzept der Industrie 4.0, welches mit dem Internet of Things Menschen, Maschinen und Objekte in Echtzeit miteinander vernetzt, bietet „enorme Chancen zur Automatisierung von Fabriken, Ressourcen- und insbesondere Energieeinsparungen und Entlastung von Routinetätigkeiten und schwerer Arbeit“ (Pampel, 2018, S.22). Dies kann zu einer höheren Profitabilität und steigenden Umsätzen führen.

Außerdem führt gemäss der „Studie Internet of Things 2020“ von IDG, die Vernetzung von Maschinen und Produkten zu geringeren Ausfallzeiten und erreicht eine höhere Auslastung, einen schnelleren ROI, ein besseres Image und einen höheren Innovationsgrad (Computerwoche, online).

„Die Digitalisierung der Fabriken erlaubt auch eine stärkere Integration in die gesamte Wertschöpfungskette zur schnelleren und individuelleren Erfüllung von Kundenwünschen“ (Pampel, 2018, S. 22).

IoT kann somit vieles heissen. Es gibt wie bereits gesehen auch keine klare Begriffsdefinition. Eine Studie der Boston Consulting Group versuchte herauszufinden, welche Technologien die vielversprechendsten Anwendungsmöglichkeiten bieten. Diese sind unter anderem (Bhatia et al., 2017, S. 2ff, eigene Übersetzungen):

Predictive Maintenance
Unternehmen verlieren viel Geld, wenn ihre Maschinen und ihre Ausrüstung nicht funktioniert und sie Ersatzteile organisieren müssen. Ausserdem ist es ineffizient fixe Wartungsintervalle einzuhalten, welche unter Umständen gar nicht nötig gewesen wären. Mittels IoT kann die Maschine selbstständig eine nötige Wartung ausfindig machen und so Stillstände in der Fabrik vermeiden.

Selbstoptimierende Produktion
Miteinander vernetzte Fabriken und Werkstätten können mittels IoT den Produktionsprozess in Echtzeit überwachen, automatisch Anpassungen vornehmen und so die Qualität und die Effizienz steigern, während Abfall reduziert wird.

Automatisiertes Lagermanagement
IoT ermöglicht eine viel tiefere Einsicht in die Lagerbestände und die Supply Chain. So können die Unternehmen den Ort und Zustand (wie z.B. Temperatur, Feuchtigkeit oder Schäden) ihres Inventars überwachen. Dank der Fähigkeit die Supply Chain zu überwachen, können Prozess- und Reaktionszeiten verkürzt werden und so Lieferengpässe und zu grosse Lagerbestände vermieden werden, wodurch der Just in Time Prozess verbessert wird.

Smart Meters
Mittels smarten Sensoren können Bestand und Verbrauch von Gütern, wie Elektrizität, Gas oder Wasser in Echtzeit überwacht werden. Dadurch kann der Konsument seinen Verbrauch überprüfen, die Anzahl Techniker für das Ablesen der Zähler wird reduziert und es ermöglicht ein dynamisches Pricing.

Flottenmanagement
In Ergänzung zur Überwachung von Inventar und Paketen, können mittels IoT auch Fahrzeuge in Echtzeit überwacht werden. Mit besseren Informationen zum Aufenthaltspunkt der Flotte, deren Benutzung und des Zustands, können Unternehmen effizienter sein, weniger Wartungs- und Reparaturkosten verursachen und dynamisches Umleiten nutzen, um Verzögerungen und Staus zu vermeiden.

Nebst diesen Beispielen sieht die Boston Consulting Group weitere Anwendungsmöglichkeiten bei vernetzten Fahrzeugen, Fernüberwachung von Patienten oder Bereitstellung von «demand response»-Programmen, welche aus der Ferne und automatisiert verschiedenste Applikationen wie Klimaanlagen, Waschmaschinen oder andere energieintensive Haushaltsgeräte starten, wann immer der Anwender dies wünscht.

Anwendungsbereiche im Controlling

Durch die Digitalisierung und das Internet of Things verändert sich somit auch die Rolle des Controllings. Trotz der immensen Datenmengen, welche heute generiert werden, kann durch die Automatisierung immer mehr Zeit eingespart werden. Das Controlling wird dadurch nicht überflüssig, im Gegenteil, es erhält einen neuen Stellenwert im Unternehmen. So agiert das Controlling heute als Business Partner. Durch das ganze Wissen in Bezug auf die umfassenden Daten, welche das Controlling analysiert und interpretiert, gewinnt dessen Position für die Unternehmung an Bedeutung bei strategischen und planerischen Entscheiden. Aufgrund dieses Wandels wird vom Controlling auch immer mehr Flexibilität erfordert. Die generierten Daten müssen somit schnell und zuverlässig ausgewertet werden. Dies macht das Controlling nicht nur zu Business Partnern, sondern erfordert zunehmend auch vertiefte IT-Kenntnisse (Egle & Keimer, 2017, S.20).

Zu den Grundlagen eines gut funktionierenden Controllingsystems gehört ein gut vernetztes, umfassendes und integriertes Informationssystem, welches ständig neue Daten generiert und diese für die entsprechenden Analysen und Anwendungen zur Verfügung stellt (Egle & Keimer, 2017, S.14). Das IoT ist somit eigentlich überall präsent, wo Daten generiert, gesammelt und zur Verarbeitung und Analyse weitergegeben werden. So betrifft dies auch viele Bereiche des Controllings:

Enterprise Resource Planing
Verwaltung der Ressourcen und Finanzdaten: Umsatz und Absatzdaten, welche beispielsweise aufgrund von Bestandsänderungen im Lager oder aufgrund von Produktionsmengen generiert und zur Analyse verwendet werden können (Egle & Keimer, 2017, S.14).

Business Intelligence
Dient als Controllingwerkzeug, womit interne wie auch externe Daten aufbereitet und harmonisiert werden, welche für weitere Planungs- und Entscheidungsprozesse hilfreich sein können. Auch hier können die Daten u.a. durch IoT generiert worden sein (Egle & Keimer, 2017, S.15).

Supply Chain Management
Dabei geht es darum, die Geschäftsprozesse innerhalb der Lieferkette zu optimieren und den Informationsaustausch zwischen Lieferanten und Kunden zu gewährleisten (Egle & Keimer, 2017, S.16). IoT kann bspw. dazu beitragen, dass Bedarfsinformationen der Kunden direkt dem Lieferanten gemeldet werden und so automatisch eine Bestellung ausgelöst wird.

Customer Relationship Management
Durch IoT können hier Kundenbedürfnisse und -interaktionen direkt in den Filialen erfasst und zur Analyse weitergeleitet werden. So kann das Angebot besser auf die Kundenwünsche abgestimmt und optimiert werden (Egle & Keimer, 2017, S.17).

Big Data Analytics
Erst durch Big Data Analytics wird es möglich, die durch das IoT generierten, riesigen Datenmengen zu strukturieren und analysieren, um schlussendlich die richtigen Schlüsse aus den Daten zu ziehen und Prozesse und Produkte zu optimieren (Egle & Keimer, 2017, S.17).

Es ist jedoch nicht primär die Aufgabe des Controllings sich mit den unmittelbaren Potenzialen der digitalen Technologien zu befassen. Vielmehr fokussiert sich das Controlling auf die wirtschaftlichen Auswirkungen dieser Technologien. Pampel unterscheidet dabei drei wesentliche Probleme, welche das Controlling zu lösen hat (Pampel, 2017, S. 21):

Innovationsproblem
Das Controlling muss sich mit Business Model Innovation (BMI) und den dazugehörigen Management Instrumenten wie Design Thinking, Open Innovation, Business Canvas etc. auseinandersetzen und ein Grundverständnis dafür entwickeln. Die durch die BMI entwickelten neuen Geschäftsmodelle werden durch die Digitalisierung technologisch ermöglicht. Dennoch besteht ein Grossteil der Innovation im Design von neuen Prozessen und Strukturen, für welche es noch keine Erfahrungswerte gibt. Die Aufgabe des Controllers ist es, die Grundstruktur für die Beurteilung der Erfolgsaussichten dieser neuen Geschäftsmodelle herauszuarbeiten (Pampel, 2017, S. 22-23).

Skalierung- und Performanceproblem
Die zentrale Aufgabe des Controllings ist es, ein Performance Management für relevante Unternehmensaktivitäten zu gewährleisten. Auf strategischer Seite ist es wichtig, dass der Controller die nationalen und internationalen Geschäftspotenziale der Innovationen erkennt und richtig einschätzt. Er muss sich ausserdem mit der Skalierbarkeit des neuen Geschäftsmodell, sowie dem richtigen Timing für die Implementierung auseinandersetzen. Sofern die Akzeptanz noch nicht gegeben ist, muss er mittels Change Management versuchen, die Partner und Mitarbeiter von den digitalen Geschäftsmodellen zu überzeugen. Auf operativer Seite muss der Controller die Implementierung mittels Meilensteinen, Budgets und Finanzierungsrechnungen begleiten. Während der Wachstumsphase ist es von Bedeutung, dass die wichtigsten Kenngrössen über den Markterfolg, die Skaleneffekte, die Erfahrungskurve aber auch über die Qualität und Steuerbarkeit (Forecast-Qualität, Big-Data-Nutzung) analysiert werden. Daneben sind die klassischen Erlös-, Kosten- und Ergebnisrechnungen zu tätigen. Ausserdem muss der Controller laufend diverse Risiken, wie das Technologie-, Markt-, Rechts- oder operative Risiko beurteilen und einschätzen können (Pampel, 2017, S.24).

Strategieproblem
Beim Übergang vom analogen zum neuen, digitalen Geschäftsmodell sind Ressourcenknappheiten durch die Konkurrenz zwischen dem bisherigen und dem neuen Geschäftsmodell zu vermeiden. Ausserdem birgt die Business Model Innovation immer auch das Risiko von anfänglichen Fehlern oder geringer Akzeptanz bei bisherigen Kunden. Deshalb erhalten neue Geschäftsmodelle in den Unternehmen oft zu wenig Aufmerksamkeit. Dieser Effekt wird verstärkt, je grösser das Kannibalisierungspotenzial des neuen Geschäftsmodells gegenüber dem Alten ist. Dabei gilt es psychologische Barrieren zu durchbrechen, wobei das neutrale Controlling, dass sowohl die aktuelle Performance der Geschäftsfelder wie auch deren strategische Bewertung in Zukunft berücksichtigt, eine zentrale Rolle spielt (Pampel, 2017, S. 25-27).

Forecast und Predictive Analytics

Das Controlling ist heute oft retrospektiv auf Produkte und Produktion ausgerichtet. Insbesondere neue Formen der Wertschöfpung wie nachgelagerte digitale Dienstleistungen können so nur schwer erfasst werden. Das Controlling wird sich deshalb in Zukunft nebst den klassischen Datenquellen auch mit der echtzeitbasierten und kontinuierlichen Auswertung der Daten beschäftigen. Aufgrund dieser Datenbasis werden Vorhersagen (Forecasts) abgeleitet. Neu werden so auch nicht-finanzielle KPIs mittels Big Data Analysen ermittelt werden. Nicht-monetäre Kennzahlen werden an Bedeutung gewinnen. Ausserdem werden die Produktionsdaten mit weiteren in- und externen Daten, wie Social-Media-Analysen, Analysen von volkswirtschaftlichen Entwicklungen oder Wettbewerbsanalysen ergänzt (Stich, 2015, S. 17-18).

Nebst dem Forecasting wird auch Predictive Analytics einen wichtigen Bestandteil von modernem Controlling darstellen. Predictive Analytics wird wie folgt beschrieben: «Dank moderner Funktionen verarbeiten Predictive-Analytics-Werkzeuge auch Big Data, also umfangreiche, polystrukturierte Datenmengen, und liefern Informationen über Zukunftswerte.

Abb. 2: Business-Intelligence Anwendungsklassen (Iffert, 2016, S. 18)

Sie beantworten Fragen wie ‘Was wird mit welcher Wahrscheinlichkeit unter welchen Voraussetzungen passieren? ’ oder ‘Was sollte passie-ren? ’» (Iffert, 2016, S. 17).


Abb. 2 zeigt, wie sich das vergangenheitsbezogene Reporting hin zur Analyse von echtzeitbasierten Daten und der daraus abgeleiteten Forecasts und Planungen wandelt, was sowohl den Freiheitsgrad für den Anwender, als auch die Komplexität der eingesetzten Instrumente ansteigen lässt.


Chancen und Herausforderungen

Durch die Einführung von 5G hat die Vernetzung der Geräte ein neues Ausmass erreicht. Die hohe Geschwindigkeit der Verbindung bietet auch für Unternehmen neue Möglichkeiten der Vernetzung und des Trackings. Nachfolgend werden Chancen aber auch Herausforderungen der ständig besser werdenden Vernetzung aufgezeigt:

Chancen
Für Unternehmen
  • Steigerung der Effizienz
  • Bessere Planung der Produktion und von Wartungsarbeiten
  • Schnelle Gewinnung hoher Datenmengen
  • Daten zur Analyse des Kundenverhaltens
  • Besserer Kundenservice

(KMU-Portal, online)

  • Neue Geschäftsmodelle
  • Integration der Wertschöpfungskette

(Unveröffentlichtes Unterrichtsskript)

Für Privatpersonen
  • Tracking der eigenen Fitness, wie Bewegungsabläufen, Herzschlag etc.
  • Frühzeitige Erkennung einer allfälligen Verschlechterung des Gesundheitszustandes
  • Steuerung und Überwachung diverser Abläufe in der Wohnung -> Heimautomation

(KMU-Portal, online)


Herausforderungen
Für Unternehmen
  • Noch zu wenig Angaben zu Kosten und Zeitaufwand für Implementierung
  • Überforderung bei technischen Gegebenheiten
  • Gefahr von Cyberangriffen, wenn nicht regelmässige Siche-rung/Aktualisierung erfolgt
  • IoT-Systeme können nicht vollumfänglich durch die klassische IT-Abteilung gemanaged werden
  • IoT-Systeme sind oft geschäftskritischer Natur

(KMU-Portal, online)

Für Privatpersonen
  • Gefahren von Cyberangriffen vor allem im Bereich SmartHome
  • Nicht ausreichende Sicherung der Objekte/Geräte
  • Zu wenig Bewusstsein bei Konsumenten über die Risiken

(KMU-Portal, online)

Lern- und Praxismaterialien

Fallbeispiele Aufgaben
Smart Factory Datenbasierte Dienstleistungen - Kaffee AG

Quellen

Literaturverzeichnis

  • Egle, U., & Keimer, I.,(2017). Digitaler Wandel im Controlling. Schriften aus dem Institut für Finanzdienstleistungen Zug IFZ. Band 37. Zug: Verlag IFZ – Hochschule Luzern [2]
  • Egle, U. (2020) Operatives und strategisches Controlling. [unveröffentlichtes Unterrichtsskript], Hochschule Luzern Wirtschaft.[3]

Weiterführende Literatur

  • Gassmann, O., Frankenberger, K., & Csik, M. (2017). Geschäftsmodelle entwickeln: 55 innovative Konzepte mit dem St. Galler Business Model Navigator (2.). München: Carl Hanser Verlag GmbH & Co. KG.

Autoren

Yasmin Schmidmajer, Seline Stirnimann, Raphael Suter, Nico Wernas