Process Mining: Unterschied zwischen den Versionen
Zeile 15: | Zeile 15: | ||
=== Verfahrensarten === | === Verfahrensarten === | ||
Beim Process Mining wird zwischen verschiedenartigen Verfahren unterschieden. Drei dieser | Beim Process Mining wird zwischen verschiedenartigen Verfahren unterschieden. Drei dieser Verfahrensarten sind in Abbildung 3 bildlich dargestellt. | ||
[[Datei:Drei_Typen.png|miniatur|center|450px|Abb. 3: Drei Typen von Verfahren des Process Mining mit ihren Ein- und Ausgaben: (a) Erkennung, (b) Konformitätsprüfung und (c) Erweiterung (Accorsi et al., 2012, S. 355)]] | [[Datei:Drei_Typen.png|miniatur|center|450px|Abb. 3: Drei Typen von Verfahren des Process Mining mit ihren Ein- und Ausgaben: (a) Erkennung, (b) Konformitätsprüfung und (c) Erweiterung (Accorsi et al., 2012, S. 355)]] | ||
Als Erweiterung wurde mittlerweile eine weitere Art des Verfahrens bei fortgeschrittenen kommerziellen Einsätzen festgestellt. Die verschiedenen | Als Erweiterung wurde mittlerweile eine weitere Art des Verfahrens bei fortgeschrittenen kommerziellen Einsätzen festgestellt. Die verschiedenen Arten werden in der untenstehenden Tabelle beschrieben. | ||
<br clear=all> | <br clear=all> | ||
{| class="wikitable" | {| class="wikitable" |
Version vom 6. Dezember 2019, 16:29 Uhr
Process Mining ist eine innovative, auf elektronischen Daten basierende Methode zur Erkennung realer Prozesse, deren Konformitätsprüfung und folglich deren Optimierung (Schmiedel & Jessensky, 2015, S. 61). Dabei werden Informationen, welche von IT-Systemen, wie beispielsweise Enterprise-Resource-Planning-System (ERP) oder Customer-Relationship-Management-System (CRM), bei der Abwicklung von Prozessen hinterlassen werden, zur Prozessvisualisierung genutzt (Peters & Nauroth, 2019, S. 1 - 3).
Ziele und Zweck
Process Mining ist als Weiterentwicklung aus den Ansätzen des Workflow-Managements, des Geschäftsprozessmanagements und des Data Mining entstanden. Während sich Business Intelligence oder Business Analytics mit der Nutzung von Big Data zur Unternehmenssteuerung und Datenanalyse befassen, kombiniert Process Mining die Prozessmodellierung, Prozessanalyse, Data Mining und Business Intelligence in einem (Peters & Nauroth, 2019, S. 3; Klein & Gräf, 2017, S. 247).
Anhand der Modellierung und Visualisierung wird verborgenes Prozesswissen ersichtlich gemacht. Diese Methode eröffnet neue Möglichkeiten, um Prozesse in einer Vielzahl von Anwendungsbereichen zu erkennen, zu überwachen und zu verbessern (Schmiedel & Jessensky, S. 61). Das Process Mining bietet folglich das Potenzial zur effizienteren und bedarfsgerechteren Planung sowie Steuerung der Unternehmensressourcen (Peters & Nauroth, 2019, S. 3; Schröder et al., 2019, S. 93; Burratin, 2015, S. 33).
Process-Mining-Verfahren
Allgemeines Verfahren
Der Ablauf des Verfahrens wird in der Abbildung 1 aufgezeigt. Softwaresysteme, welche zur Unterstützung der realen Geschäftsprozesse eingesetzt werden, speichern Ereignisdaten (Nachrichten, Transaktionen und Protokolle) zu den Prozessen ab. Die Prozessdaten werden in einem Ereignisprotokoll extrahiert, kontrolliert und anschliessend mit Hilfe einer Process-Mining-Software, welche verschiedene Verfahrensarten kennt, zu einem Prozess rekonstruiert, um den realen Prozess abzubilden (IEEE Taskforce on Process Mining, o. D., S. 3).
Verfahrensarten
Beim Process Mining wird zwischen verschiedenartigen Verfahren unterschieden. Drei dieser Verfahrensarten sind in Abbildung 3 bildlich dargestellt.
Als Erweiterung wurde mittlerweile eine weitere Art des Verfahrens bei fortgeschrittenen kommerziellen Einsätzen festgestellt. Die verschiedenen Arten werden in der untenstehenden Tabelle beschrieben.
Verfahren | |
---|---|
(a) Erkennung (engl. Discovery) | Aus den gewonnenen Daten der IT-Systemen, welche zur Prozessunterstützung angewendet werden, wird ein Ereignisprotokoll erstellt. Aus diesem wird anschliessend automatisch mit Hilfe der Process-Mining-Software ein Prozessmodell generiert, welches den realen Prozess visualisiert (van der Aalst, 2016, S. 33, zit. in Peters & Nauroth, 2019, S. 6). |
(b) Konformitätsprüfung (engl. Conformance) | Der reale Prozess wird mit einem vorgegebenen Modell verglichen. Aufgrund des Ist/Soll-Vergleichs werden durch die Konformitätsprüfung Unterschiede zwischen dem modellierten und dem protokollierten Verhalten verdeutlicht. Somit können Abweichungen oder Ineffizienzen diagnostiziert werden (van der Aalst, 2016, S. 33, zit. in Peters & Nauroth, 2019, S. 6, s. auch Schmiedel & Jessensky, 2015, S. 56). |
(c) Erweiterung (engl. Enhancement) | Der Prozess wird durch die neu gewonnen Informationen aus der Diagnose erweitert oder verbessert. Nicht passende Prozessschritte werden korrigiert und falsche Prozessreihenfolgen angepasst (van der Aalst, 2016, S. 33, zit. in Peters & Nauroth, 2019, S. 6). |
(d) Operative Unterstützung IT-basierter Systeme | Durch die Verwendung von Process Mining in operativen Systemen sowie aus den Erkenntnissen der Ereignisprotokolle können Vorgangsbearbeitungen (wie Bestellprozesse in ERP-Systemen) unterstützt werden. Dabei werden durch die Process-Mining-Software laufend in Echtzeit Daten der Geschäftsprozesse gesammelt (van der Aalst, 2016, S. 33, zit. in Peters & Nauroth, 2019, S. 6). |
Voraussetzungen
Damit bei Process Mining die realen Prozesse wahrheitsgetreu rekonstruiert werden können, ist die Qualität, Integrität und Identifikation der für das Process Mining verwendeten Daten ausschlaggebend (Peters & Nauroth, 2019, S. 12). Um dies zu gewährleisten sind folgende Voraussetzungen zu erfüllen (Peters & Nauroth, 2019, S. 19; Schröder et al., 2019, S. 93; van Dongen & van der Aalst, 2005, S. 4):
- Ein eindeutiges Identifikationskriterium (zum Beispiel eine Bestellnummer), damit der zu analysierende Prozess durch die verschiedenen Prozessabschnitte von Start bis Ende verfolgt werden kann.
- Ein Zeitstempel, so dass die einzelnen Prozessschritte in der richtigen chronologischen Reihenfolge abgebildet werden können.
- Eine klar und explizit abgrenzbare Aktivität (zum Beispiel Rechnung versenden), wobei der Beginn und das Ende der Tätigkeiten innerhalb der Aktivität deutlich ersichtlich sein muss.
Bei Process Mining werden Daten genutzt, welche von Systemen innerhalb der Organisation gesammelt wurden. Dies betrifft zum einen persönliche Daten der Personen, die im Prozess involviert sind sowie auch persönliche Daten der Personen, welche die Aktivitäten im System bearbeiten. Um einen vertraulichen Umgang mit den Daten sicherzustellen, sind nur jene Daten zu extrahieren und in den Ereignislog zu übermitteln, welche für die tatsächliche Prozessermittlung benötigt werden. Vorgängig sind sie zu anonymisieren (Peters & Nauroth, 2019, S. 37 – 39).
Anwendungsbereiche
Durch Process Mining können Geschäftsprozessen gezielt gesteuert werden. Somit kann Benchmarking von Prozessen zwischen Unternehmensbereichen, Werken und organisatorischen Einheiten betrieben werden. Auch lassen sich sogenannte Echtzeit-Geschäftsvorgänge aufgrund der Simulation von Bearbeitungszeiten anhand historischer Prozessdaten unterstützen. Auf diese Weise können beispielsweise Verzögerungen der Auftragsbearbeitung prognostiziert und die Liefertreue verbessert werden. Zudem wird durch das Process Mining agiles Geschäftsprozessmanagement ermöglicht (Peters & Nauroth, 2019, S. 27).
Unternehmensführung
Ebenfalls unterstütz das Process Mining die Unternehmensführung und -ausrichtung. Einerseits können reale Prozesse optimiert und anderseits künftige Prozesse neu gestaltet werden.
In verschiedenen Phasen der Unternehmensführung ist Process Mining sinnvoll, beispielweise bei der Entwicklung des bestehenden Geschäftsmodelles oder um einen Einblick in das Kundenverhalten zu erhalten. Somit verbessert sich die Produktivität und Effizienz innerhalb des Projektteams, dient die Termintreue des Projekts einzuhalten, trägt zur Investitionssicherheit bei oder unterstützt die nachhaltige Wettbewerbsfähigkeit, Entwicklungsfähigkeit des Unternehmens und Zufriedenheit der Mitarbeiter (Peters & Nauroth, 2019, S. 28 – 30). Im konkreten Beispiel, kann dadurch bei einer Bestellung im ERP-System, auf Grund der automatisch gesammelten Daten darauf hingewiesen werden, wie sich diese Bestellung auf die Auftragsterminplanung der Produktion auswirkt. Schlussendlich können Massnahmen abgeleitet werden (van der Aalst, 2016, S. 33, zit. in Peters & Nauroth, 2019, S. 6).
Governance, Risk Management und Compliance
Mit dem Process Mining lässt sich erkennen ob interne Beschränkungen oder Richtlinien, wie beispielsweise das Vier-Augen-Prinzip oder Autorisierungsgrenzen für Bestellungen, eingehalten werden. Diese lassen darauf schliessen, ob die Geschäftsprozesse ordnungsgemäss abgewickelt wurden. Somit dient das Process Mining den Themengebieten Governance, Risikomanagement und Compliance auch als Unterstützung. Dabei können die Auflagen kostengünstig erfüllt und ein betriebswirtschaftlicher Vorteil generiert werden, da verschiedene (ISO-)Auflagen zusätzlich zu Produkteigenschaften das Dokumentieren von Produktions- und Geschäftsprozessen erfordern (Peters & Nauroth, 2019, S. 27 – 28).
Controlling
Um das Controlling effizienter zu gestalten, helfen digitale Technologien (Digital Controlling), wobei eine enge Zusammenarbeit mit einem Datenspezialisten (Data Scientist) gefordert ist.
Das Process Mining ermöglicht es, aufgrund der automatischen Auswertung der Daten, Kennzahlen und Reportings für das Controlling schnell und unkompliziert zu erstellen (Peters & Nauroth, 2019, S. 18; Schröder et al., 2019, S. 96). Beim Ist/Soll-Vergleich werden mit Hilfe von Kennzahlen (zum Beispiel Arbeitsvorräte, Bearbeitungsquoten, Durchlaufzeiten, Fristeinhaltung von Prozessen, etc.) Abweichungen erkannt. Dies erlaubt das Ergreifen von Massnahmen, um diese Abweichungen zu korrigieren. Die Erfolge der Verbesserungen können anschliessend wiederum durch Process Mining geprüft werden (Peters & Nauroth, 2019, S. 33; Schröder et al., 2019, S. 95).
Auch das Working-Capital-Management kann mit Process Mining untersucht werden. Durch die Analyse gesammelter Daten kann ein Unternehmen seine Kapitalbindung reduzieren und Liquidität schneller freisetzten. Beispielsweise kann untersucht werden, wie lange eine Tochtergesellschaft braucht, um Rechnungen von Lieferanten im System zu erfassen, bei wie vielen Transaktionen das Unternehmen Skonto erzielen konnte oder in welchem Prozessschritt es zwischen Versand der Ware und der Rechnungsstellung zu Verzögerung kommt (Finance-Magazin, online).
Process Mining im Vergleich zu traditionellen Methoden
Im Gegensatz zum technisch gestützten Process-Mining-Verfahren erfolgt die Analyse eines Prozesses nach traditioneller Methode über Interviews oder Workshops mit verschiedenen Mitarbeitenden aus den Fachbereichen und der IT (actrans, online). In der nachfolgenden Tabelle werden die traditionelle Methode und das Process Mining zur Prozessoptimierung verglichen:
Prozessoptimierung mit traditionellen Methoden | Prozessoptimierung mit Process Mining | |
---|---|---|
Methode |
Prozessaufnahme mittels bereits existierender Prozessbeschreibung, Interviews oder Workshops oder Nutzung von Dokumentationen oder Visualisierungstools |
Rekonstruktion von Prozessen auf Basis von Ist-Daten durch die Unterstützung einer Process-Mining-Software |
Häufigkeit | Meist einmalig | Meist mehrmalig bis kontinuierlich |
Voraussetzungen | Keine besonderen Voraussetzungen | Gute Qualität der Prozessdaten |
Aufwand nach Phasen | 1. Prozessaufnahme (sehr hoch)
2. Analyse (hoch) 3. Ableitung von Massnahmen (hoch) 4. Implementierung (sehr hoch) |
1. Prozessaufnahme (gering bis mittel)
2. Analyse (mittel) 3. Ableitung von Massnahmen (mittel) 4. Implementierung (hoch) |
Ergebnisse | Meist nur Aufnahme des Standardprozesses ohne quantitative Merkmale | Objektive Abbildung aller Haupt- und Nebenprozessvarianten für die Diagnose- und Verbesserungsent-scheidungen |
Herausforderungen, Chancen und Risiken
Zwar ist das Process Mining eine junge Disziplin der Wirtschaftsinformatik, dennoch lässt sich folgendes ableiten: Die realen Prozesse lassen sich gut erkennbar machen bzw. visualisieren, Engpässe werden schnell und gut erkannt, Prozesseffizienz und Servicegrad können deutlich verbessert werden, Ereignislogs unterschiedlicher Einsatzfälle können erfolgreich bearbeitet werden und dass in vielen Fällen explizit der weitere, zukünftige Einsatz von Process Mining als auch die Ausweitung auf weitere Prozesse angestrebt wird. Grosse Unternehmen, die eine Vielzahl von standardisierten Geschäftsprozessen bearbeiten, können somit enorme Effekte durch die Prozessoptimierung generieren (Peters und Nauroth, 2019, S. 31 - 33).
Jedoch stossen die Unternehmen bei der Verwendung von Process Mining auch auf Herausforderungen. Um Process Mining auszuführen ist eine hohe Anzahl von gleichen Vorgängen erforderlich, um eine genügend grosse Datenbasis für die Ereignislogs zu bieten. Wenn ein Unternehmen zwar einen grossen Umsatz hat, aber eine geringe Anzahl an Vorgängen, ist das Process Mining nicht sinnvoll. Als Grössenordnung werden in der Theorie 15'000 Vorgänge angegeben. Es muss zudem mit dem Process-Mining-Software-Hersteller oder der unterstützenden Beratungsstelle abgeklärt werden, ob die Datenbasis quantitativ für eine qualitativ aussagekräftige Analyse ausreicht. Wenn ein Unternehmen zwar viele Vorgänge bearbeitet, diese aber mit wenig Personal abwickelt, würde der Nutzen von Process Mining wirtschaftlich ebenfalls in Frage gestellt. In diesem Fall reichen herkömmliche Key Performance Indicators (KPI's) aus, um die Prozesseffizienz zu wahren (Peters und Nauroth, 2019, S. 34 – 35).
Lern- und Praxismaterialen
Aufgaben | Fallstudien |
---|---|
Quellen
Literaturverzeichnis
- Burratin, A. (2015). Process Mining Techniques in Business Environments. Theoretical Aspects, Algorithms, and Open Challenges in Process Mining. Cham: Springer International Publishing.
Weiterführende Literatur
- Müller, T. (2018, 29. Mai). Software-Wunderwaffe für bessere Abläufe. Neue Zürcher Zeitung, S. 25.
- Peters, R. & Nauroth, M. (2019). Process-Mining: Geschäftsprozesse: smart, schnell und einfach. Wiesbaden: Springer Gabler.
- van der Aalst, W. (2016). Process Mining. Data Science in Action. Berlin, Heidelberg: Springer.
Autoren
Branka Radonjic, Fisniki Shoshi, Paulina Rogantini, Nadine Rohrer